
How Powerful are Decoder-Only Transformer
Neural Models?

Jesse Roberts
Department of Computer Science

Vanderilt University
Nasvhille, TN

Jesse.Roberts@Vanderbilt.edu

Abstract—In this article we prove that the general trans-
former neural model undergirding modern large language models
(LLMs) is Turing complete under reasonable assumptions. This
is the first work to directly address the Turing completeness of
the underlying technology employed in GPT-x as past work has
focused on the more expressive, full auto-encoder transformer
architecture. From this theoretical analysis, we show that the
sparsity/compressibility of the word embedding is an important
consideration for Turing completeness to hold. We also show that
Transformers are are a variant of B machines studied by Hao
Wang.

Index Terms—Transformer Theory, LLM, Decoder-only trans-
former, Turing Complete

I. INTRODUCTION

Transformer models have achieved state of the art perfor-
mance on many tasks since their introduction in [1]. However,
the provenance of their capabilities is not yet well understood.
While some evidence suggests that capabilities may emerge
as a function of model size [2], continually increasing the
number of parameters consumes significant energy posing risk
to the environment [3]. In this paper, we provide a proof that
suggests that decoder-only transformer language models, like
GPT-x, do not require the vast number of layers, attention
heads, and parameters typical in current implementations to
achieve powerful computation.

The transformer architecture introduced in [1] is based
on a denoising auto-encoder scheme. Interestingly, the work
on these vanilla transformers has largely been eclipsed by
variations of the transformer like that in [4], [5] (GPT), and
[6] (BERT). Much of this may be due to GPT-4 [7] and its
predecessors which have captured public attention. While the
exact architecture of GPT-4 is closed source, GPT-3 and GPT-
2 are known to be decoder-only transformer architectures [8],
[9].

Work regarding the computational expressivity of the vanilla
transformer has proven it to be Turing complete [10], [11].
However, in subsubsection II-A2 we show that these proofs
do not naturally extend to the decoder-only transformer ar-
chitecture. Further, no formal evaluation of the computational
expressivity exists for the decoder-only transformer architec-
ture. In this paper:

1) We show that the decoder-only transformer architecture
is Turing complete

2) We show that this result holds even for single layer, single
attention head decoder-only architectures

3) We establish a minimum vector dimensionality, relative
to the token embedding size, necessary for Turing com-
pleteness

4) We classify decoder-only transformer models as a causal
variant of B machines [12]

5) We provide an explanation for parameter inefficiency
Based on our results, we suggest that decoder-only architec-

tures do not necessarily require the large number of parameters
typically allocated to perform the necessary computations to
support complex NLP functionality. Rather, the number of
parameters may be necessitated by the interaction between the
language modeling task and the architecture. This suggests that
minor architectural adjustments could permit more parameter-
efficient future models.

II. BACKGROUND

A. Disambiguating Decoder-Only Transformer Models

Following after [4], the creators of GPT refer to their archi-
tecture as a decoder-only transformer. Seemingly in contrast,
the creators of BERT refer to it as an encoder-only model
[6]. This decoder-only/encoder-only architecture dichotomy is
somewhat misleading as the two are architecturally identical
as can be seen in Figure 2. The differentiation lies in how the
models execute. BERT and other encoder-only architectures
are incapable of recursion. On the other hand, at each time
step t > 0, decoder-only architectures have access to their
own outputs from all previous time steps. This permits the
model to be trained to generate output auto-regressively.

For brevity we follow previous conventions and refer to
the transformer architecture presented in [1] as the vanilla
transformer, shown in Figure 1. Encoder-only transformer
architectures do not possess a decoder. Similarly, decoder-
only models do not have an encoder. These architectures
are shown in Figure 2. Notice, in the case of encoder-only
models, disconnection at the encoder output is sufficient to
unambiguously define the modification to the vanilla trans-
former architecture. This is not the case for decoder-only
architectures.

As mentioned, previous proofs regarding the computational
expressivity of the vanilla transformer require the encoder

ar
X

iv
:2

30
5.

17
02

6v
3

 [
cs

.C
L

]
 2

 F
eb

 2
02

4

for input presentation and do not hold when the encoder is
removed.

1) Modifying the Vanilla Transformer to form a Decoder-
only Model: To create a decoder-only model, the vanilla
architecture is modified in two ways. First, the connection
to the encoder is removed. Second, the cross-attention which
allows the decoder to conditionally attend to the encoder
output at each layer of the decoder is eliminated. These, along
with the entire encoder, are surrounded by a dashed yellow
line in Figure 1 to visualize what is eliminated. As mentioned
previously, this superficially suggests that encoder-only and
decoder-only architectures are identical as seen in Figure 2.

2) Differentiating Encoder-only and Decoder-only Mod-
els: Decoder-only models have three necessary character-
istics which are derived from their function in the vanilla
transformer. The decoder must (1) provide a means of auto-
regressively predicting the next token based on the tokens
generated so far given the encoder input as contextualization.
In Figure 2 this is shown as the recursive red connection
mapping the output vector back into the last element of the

Fig. 1. Vanilla Transformer Architecture. The yellow dashed line surrounds
the sections removed to create a Decoder-only Transformer model.

input sequence of vectors. To be suited to this task, decoder-
only models must (2) not see future values when evaluating a
query on the input sequence of vectors. This is why decoder-
only models are often referred to as causal language models
(CLM). In Figure 2, we refer to the decoder attention heads as
causal attention heads rather than masked attention heads as
they are called in [1]. The model must be (3) trained to predict
the next token given the current input sequence of vectors.
This training method coupled with recursion allows decoder-
only models to auto-regressively generate arbitrarily long (up
to the max size of the input vector sequence) sequences.

If any of the above are violated, the model can’t be
reasonably considered a decoder-only model as it is no longer
capable of auto-regressive next token prediction.

B. Related Theoretical Work on Transformers

Transformers were shown to be Turing complete first in [10]
with a simpler approach to the proof given in [11]. The latter
is based solely on the ability of the transformer to simulate
arbitrary RNNs which are known to be Turing complete
[13]. This latter work also considered the contribution of the
various architectural elements to the computational power. In
their construction, they find the computational universality
of the transformer is maintained even if the encoder acts
essentially as an identity operator for the appropriate input. All
significant computation, beyond input presentation, is handled
exclusively in the decoder and FFN. However, in both proofs,
the encoder is a necessary component without which the
Turing completeness result does not hold.

Hahn shows that softmax based attention is often well
approximated by the hardmax function [14]. They further show
that one can apply input restrictions to transformers such that
PARITY is unrecognizable in a single feedforward encoder
pass regardless of the number of layers. However, their work
assumes the number of computations is bounded by the length
of a bounded length input.

In [15], the authors studied encoder-only architectures and
showed that they were capable of universal function approx-
imation. For this to be the case, the attention mechanism of
the encoder-only architecture must be sufficient to provide the
FFN with access to all subsets of the input field. Or to put
this in terms familiar to a convolutional system, the attention
mechanism must be capable of implementing any arbitrary
feature map. This result is also important to the theoretical
understanding of decoder-only transformer architectures as
is clear in Figure 2. Specifically, this implies that decoder-
only models are universal function approximators for the nth

attention query in the Lth layer given an input sequence of
length n. However, this does not prove Turing completeness.

It is reasonable to believe universal function approximation
may be grounds for expecting Turing completeness to hold
due to the progression of the literature for ANNs which
began by showing universal function approximation [16] and
then progressed, through the addition of recursion, to Turing
completeness [13]. Further, it is intuitive based on the recursive
capability of decoder-only models coupled with universal

Fig. 2. Decoder-only (left) and Encoder-only (right) Transformer Architectures. Green boxes are sequences of vectors with the width of the box representing
relative sequence length. Red denotes a single vector. Gray and blue boxes denote simple and compound operations respectively.

function approximation, as a model which can compute any
partial recursive function is necessarily Turing complete [17].
However, this would require that the computational class
which includes primitive functions with composition and min-
imisation [18] be equivalent to the class of universal function
approximators. Interestingly, the equivalency of these classes
has never been addressed, leaving this an open question.

The only research regarding the computational expressivity
of decoder-only transformer models (at the time of writing)
is that of [19]. They recently considered the computational
power of memory augmented language models. They showed
that, when augmented by a memory module which is not part
of the typical decoder-only transformer architecture, the model
is Turing complete. To date, no work in the literature has
addressed the computational power of typical decoder-only
transformer models.

C. Required Conventions Inherited from Vanilla Transformers

The following are not architectural or training limitations,
and are instead conventions that could be relaxed by future
transformer architectures. However, we choose to evaluate
the computational expressiveness of the typical decoder-only
transformer model in common use.

First, the input embedding and output embedding used in the
decoder must be identical. This permits the model output to be
directly appended to the input vector sequence. Implicitly, this
means decoder-only models can’t have orthogonal input and
output dimensions in the context vector. This is an important

point as the proof method from [11] requires orthogonal-
ity which was permitted by cross-attention. However, cross-
attention is removed in the decoder-only model as seen in
Figure 1.

Second, the input dimension of the FFN(s) must have the
same dimensionality as the model dimension ie. the dimen-
sionality of a vector in the input sequence. This disallows
sparsification in the latent space which could be used to create
a FFN input dimensionality greater than the model dimension-
ality. However, this does not require that the dimensionality of
the model, dmodel, be equal to the embedding dimensionality,
dembed.

III. DEFINITIONS & APPROACH

We modify the formalism established in [10] and used in
[11] for theoretical transformer analysis to be appropriate for
our analysis of decoder-only architectures.

A. Embedding & Position

Transformers embed inputs as higher dimensional vectors
via a base embedding fb. So, for a vocabulary Σ with
cardinality m, fb : Σ → Qdb where db is the number of
dimensions in the embedding.

The Turing complete proof method will require that the
transformer recognize the RNN stop token. Therefore, we
define the embedding for the end symbol $ such that fb($) =
1db .

In most transformer architectures the embedding is sup-
plemented with positional information (whether explicitly de-
fined or learned). Here we define the positional encoding as
pos : N → Q. So, for a vector Sk = (σ1, ..., σk) with σk ∈ Σ
for all k ≥ 1, the embedding with position of Sk is given by
(fb(σ1)+ pos(1), ..., fb(σk)+ pos(k)). The dimensionality of
the combined token and position embedding is dembed.

B. Decoder-only Transformer Architecture

A single layer decoder-only transformer is comprised of
multi-headed attention followed by a feed forward network as
seen in Figure 2. It takes as input a sequence Y = (y1, ...,yk)
of vectors where k ≥ 1. The output of any single layer is
likewise a sequence of vectors Z = (z1, ..., zk).

As previously mentioned, all y ∈ Y and z ∈ Z must have
dimensionality dmodel. However, dembed is not required to be
equal to dmodel. We choose to include additional space in
dmodel such that the overall representation is sparse. Specifi-
cally, dmodel = 2 · dembed + 3. The details of this choice are
discussed in the proof.

The full decoder-only transformer architecture is formed by
a stack of L layers, each composed of a single layer decoder.
The output of a single execution of the model is a single vector
zLk , where superscript L denotes the Lth layer. This vector
is then directly appended to Y such that yk+1 = zLk . The
output of the previous execution is appended to the input of
the subsequent execution, creating recursion.

The model will recursively execute continuously until a
stopping criteria is met. Typically, the model is allowed to
execute until a special token embedding is output by the
model. After execution terminates, the size of the output
sequence will be |Y| = k + N where N is the number of
executions. The sub-vector (yk+1, ...,yk+N), referred to as
the response, is the complete output of the model given the
original prompt contained in (y1, ...,yk).

C. Self-Attention

Every layer in Figure 2 has one or more causal, self-
attention, heads which filter the prompt to attend to the
germane portions. Each attention head possesses functions
Q(·), K(·), and V (·) which apply a linear transformation to
each y ∈ Y. This results in a sequence of query vectors Q,
sequence of key vectors K, and sequence of value vectors V.

Each head creates a filtered view of the layer input given
each query. Value vectors in V are chosen using the query
vector q, the sequence of keys K, and scoring function
fatt(q,k) ∀k ∈ K. The scoring function is the dot product
of the vectors combined with a non-linear function [1].

Specifically, q attends to V according to an attention vector
a = hardmax(α1, ..., αn) with αi = fatt(q,ki) for all 1 ≤
i ≤ n. Then, the q attention on V is ⟨a,V⟩. This self-attention
is compactly referred to as Att(q,K,V).

In [1], softmax is used. However, hardmax is used in our
case to ensure all outputs are rational. Specifically, for a vector
x with m maximum values, hardmax(xi) = 1/m ∀xi ∈ x
iff xi is a maximum, else hardmax(xi) = 0.

In the case of multiple attention heads, each of these filtered
views are concatenated and then agglomerated. Agglomeration
is necessary because the concatenation step may produce a
representation which no longer has dimensionality dmodel. To
return to dmodel, a linear transformation using a set of weights,
W l, with dimensionality dvl,Hxd is applied. The concatenation
and linear transform are referred to compactly as Conn(·).

D. Feed Forward Network

The feedforward network, referred to as O(·), is fully con-
nected and parameterized by θ. The output is Z = (z1, ..., zk).

E. Single Layer Decoder-Only Models

The following set of equations fully characterizes the func-
tion of a single layer decoder-only transformer model. Notice
that the output is a sequence of vectors.

p = Att(Q(y),K(Y), V (Y)) (1)
r = Conn(p) + y (2)
z = O(r : θ) + r (3)

The set of equations characterizing a single layer are com-
pactly referred to as Decl(Yl; θl), with l denoting the layer.

F. Multi-Layer Decoder-Only Models

A multi-layer decoder-only transformer has one or more
additional layers which take the output sequence generated by
the previous layer as as input.

The output sequence of vectors from layer l is then referred
to as Y l and becomes the input to layer l + 1. The output
equation becomes Y l+1 = Decl(Yl; θl), with Y0 = Y. The
output of a model is a single vector, the kth element of the
output vector for the last layer.

G. Proof Approach

Our approach to proving Turing completeness, following
the example of [11], is to show that a decoder-only trans-
former architecture is capable of simulating the computations
performed by an RNN. Based on the work of [13], RNNs are
known to be at least as computationally expressive as Turing
machines. Therefore, if a decoder-only transformer model can
simulate an arbitrary RNN, then the decoder-only transformer
architecture is at least as computationally expressive as a
Turing machine.

Just as in [11] we will say that an RNN is simulated if
(1) at each time step the input vector to the neural network
contains the input xt, (2) at each time step the input vector to
the neural network contains the hidden state ht, and (3) the
decoder-only model stops at the same time step as the RNN.

To simulate an RNN via a decoder-only transformer ar-
chitecture we use the decoder to implement recursion as has
been done previously for vanilla transformers. However, our
construction is different in that decoder-only transformers do
not have an encoder. Therefore, we will provide the input to the
model as the prompt and the response will be appended until
execution terminates. It is clear that Y will always contain

ht and xt for all timesteps. We will show by construction
that self-attention, a feedforward neural network, and recursion
via the decoder-only transformer is sufficient to attend to and
present ht and xt to the FFN for all t and simulate an arbitrary
RNN.

IV. RNN SIMULATION BY DECODER-ONLY
TRANSFORMER

In this section we prove that there exists a single-layer,
single-attention head, decoder-only transformer which may
simulate any RNN. Some details are encapsulated in theorems
below the proof body. In the subsequent sections we give a
detailed, intuitive explanation of the proof and discussion of
the implications and limitations.

A. Proof

Consider a decoder-only transformer with a single layer and
single attention head in that layer.

Before the first execution of the network, the input sequence
of vectors, Y, contains the prompt (inputs to the RNN) in the
form yi = [fb(σi), 0

dembed , i, t, stop] with each yi ∈ Y having
dimensionality dmodel. The value of i, t, and stop for i ≤ k
are pos , 0, and 0 respectively. The penultimate element in the
prompt, yk−1, has σk−1 = $, and the last element, yk, has
σk = 0dembed , the RNN start token.

Appropriate Q, K, and V linear transforms are ap-
plied to each element of Y such that qi = yi, ki =
[0dembed , 0dembed , 1,−1, 0], and vi = yi. Therefore, ⟨qi,k⟩ =
i− t. The existence of such a Q, K, and V is trivial.

By application of the nonlinear function, fatt(q,ki), the
attention on each v ∈ V is αk = −|i − t|. Therefore,
hardmax (V) = 1 when i = t and 0 ∀i ̸= t. Therefore,
Attn(qi=t,K,V) = xi=t. Therefore, the t element in the
query vector selects the i = tth element from the prompt.

To generate the tth element of prompt, the query qk+t =
Q(yk+t) is used. The model will execute a total of N times
such that t = 0...N .

Notice the first execution has qk+t = [0dembed , 0dembed , i =
pos(k), t = 0, stop = 0] and, by application of the ag-
glomeration and residual connection as described in Theo-
rem 4.4, the vector presented to the FFN will be [ht =
fb(σk), xt = fb(σt), i, t, stop]. The FFN will output the vector
yk+t+1 = [ht+1, 0

dembed , i = k + t + 1, t = t + 1, stop]
which is appended to the sequence Y. Therefore, for all
executions t > 0, the vector presented to the network will
be [ht = fb(σi=k+t), xt = fb(σi=t), i, t, stop].

As proved in Theorem 4.3 and Theorem 4.2 there exists an
FFN such that once the stop token, fb($), has been encoun-
tered the output of the FFN for all subsequent time steps will
be stop = 1 and the value xt = fb(σi=t) will be overridden
in latent space such that for all t > k, xt = xk = fb($) due
to Theorem 4.1.

At all time steps the FFN will be presented with xt, ht,
and will terminate based solely upon the weights of the RNN.
Therefore, there exists a decoder-only transformer which may
simulate any RNN.

B. Theorems

Theorem 4.1 (Single Network replacement of Cascaded
Networks):

For any pair of fully connected feed forward neural net-
works (FFNs) such that the outputs of the first are fed into the
inputs of the next, there exists a single FFN whose outputs
will be identical to the outputs of the second network.

By construction, the output weights can be directed into the
input of the subsequent network and stored in a single set
of network connection matrices such that a single network is
created. The outputs of the first network in the cascade become
a latent space within the combined network.

Theorem 4.2 (FFN Override Input):
Given any neural network with inputs x1, ..., xk, outputs

O = o1, ..., ok, and nl neurons in l hidden layers. We may
add an input xk+1 and neuron nl + 1 to hidden layers 1...l
such that an arbitrary subset o′ ∈ O are overridden by the
added neurons.

All weights from input xk+1 to neurons 1, ..., n1 are set to
zero. All weights from inputs x1, ..., xk to neuron n1 + 1 are
zero. The weight from input xk+1 to neuron n1 +1 are set to
infinity.

In each layer l > 1, neuron nl + 1 has connections set to
zero for all neurons 1, ..., nl−1. And in each layer l > 1, nl+1
has connections set to infinity for neuron nl−1+1. This forms
a column of mutually connected neurons.

An arbitrary subset of outputs o′ ∈ O may be chosen which
are to be affected by the added column of neurons. The weights
connecting neuron nl + 1 in hidden layer l to each output in
o′ are set to infinity and the weights connecting nl+1 to each
output in O \ o′ are set to zero.

For all neurons nl + 1 in all layers, the bias value is set
to zero. Therefore, when the input xk+1 = 0, the original
function of the network is left unchanged. When xk+1 = 1,
the value of each output in o′ is forced to be the max activation
function value.

Theorem 4.3 (Recognize the stop token):
Given a stop token $ that is embedded as a vector with k

elements each equal to 1 and presented to a neural network
along inputs x1, ..., xk, a neuron may be defined such that the
output is non-zero only for inputs that are ϵ close to the stop
token embedding.

Since the stop token is defined as a vector of ones, for
any token presented, the output of the neuron is zero when
k−Σk

i=1xi > ϵ and is greater than zero for all other inputs so
long as the bias is b = ϵ− k. By setting the output weight of
the neuron to be a large value, any non-zero output will result
in saturation of downstream neurons with non-zero connecting
weights. Therefore, an output that represents whether the stop
token has been presented will have a max activation function
value iff the input along x1, ..., xk is within ϵ of $.

Theorem 4.4 (Compression of xt and ht into rt):
Given a token base embedding with dimensionality dembed,

xt and ht may be losslessly compressed into rt when each
have dimensionality d.

Recall the dimensionality of V (xt) with xt ∈ Y is not
related to d. Rather, V : Qd → Qdembed such that V (xt) = σt

with σt being a token in Σ. Then, by matrix multiplication
with W defined as:

(1, dembed) (1, dmodel)


0 ... 0 1 0 ... 0 0 0

...
. . . 0 0

. . . 0 0 0
...

0 0 0 ... 0 1 0 0 0
(dembed, dmodel)

The resulting vector is Conn(pt) = [0dembed ,xt, 0, 0, 0].
Finally, by applying the residual connection we have rt =
[ht,xt, i, t, stop].

V. PROOF EXPLANATION

To accomplish RNN simulation, an attention head is used
to select the appropriate input from the prompt in Y. The
attention head and agglomeration weights shift the embedded
representation of the input into an empty area of the model
embedding. Then, the residual connection sums the input
vector with the attention representation. This results in ht and
xt in a single vector of size of dmodel. This vector is then
presented to the FFN which contains the RNN weights as
well as cascaded supplementary functions.

A. Vector Elements

Recall the base embedding has dimensionality dembed. As
discussed previously, the input dimension of the FFN must
be 2 · dembed + 3. From the requirements inherited from
transformer conventions, the model dimension must be equiv-
alent to the input dimension of the FFN. So, we choose
dmodel = 2 · dembed + 3. Therefore, each y ∈ Y is composed
as yi = [fb(σi), 0

dembed , i = pos, t, stop]. fb(σi) is the base
embedding of the token in position ith position. 0dembed is the
unused space to permit simulataneous presentation of xt and
ht to the FFN. The sequence position of σi is stored in i and
the execution time step is written by the FFN to t.

B. Attention

A single atttention head attends to yi where i = t. This
input value is referred to as xt as this is the value which
would be presented to an RNN at time t.

The attention head will return xt with size dembed. By
application of a linear transformation, W l, xt is right shifted
|dembed| elements and padded with zeros to have dimension
dmodel. Finally, via the residual connection and normalization,
the resulting rt from Equation 2 is rt = [ht, xt, i, t, stop],
proved in Theorem 4.4.

Note that for all t > k, the attention head will select a value
from the response. If unaddressed, this would prevent RNN
simulation as only the prompt contains RNN input. However,
as explained, when t > k the stop token will have been seen
and the FFN will ignore the value presented by the attention
head by overriding it with the stop token. As an alternative
construction, the position encoding could be set to zero for
all vectors in the response generated by the model as this
would result in the stop token being attended to for all t > k.

However, we avoid this solution as it is a significant deviation
from typical models.

A similar method for selection of the tth element of y is
used in [11]. However, in their construction the attention head
is performing cross attention rather than causal, self attention
Figure 1. This important difference means that their construc-
tion does not apply to decoder-only transformer models.

C. FFN Operations

The FFN instantiates the weights of the RNN. However, the
FFN has three additional functions. The FFN (1) recognizes
the RNN stop token and (2) overrides the xt provided by the
attention head with the stop token if the stop = 1. Lastly,
the FFN (3) acts as a counter which generates the execution
timestep, t+ 1, based on t in the previous input vector.

The stop token recognition, override function, and RNN
weight instantiation are each proved possible for standalone
networks. However, by considering each of the individual
networks as cascaded, there exists a single network which may
implement these three functions in series.

D. Summary

At each time step, the transformer FFN is presented with
xt and ht. Further, ht+1 will generate the RNN stop token at
the same time step as the RNN. This is because the RNN
weights are a proper subset of the FFN weights and they
have identical access to xt and ht as would occur in an
RNN. There necessarily exists a decoder-only transformer
capable of simulating an arbitrary RNN and thus the class
of decoder-only transformer models is shown to be at least as
computationally expressive as RNN models. Therefore, there
exists a computationally universal decoder-only transformer.

E. Assumptions & Limitations

There are 2 main assumptions required by this proof which
limit applicability to general decoder-only models.

First, the attention mechanism here uses hardmax as op-
posed to the typically used softmax. This assumption is similar
to prior work in theoretical transformer analysis [10], [11] and
is necessary to ensure values are kept rational which is not the
case for softmax. Additionally, [14] suggests that transformer
softmax attention heads may focus attention on high scoring
context and learn behavior that is well approximated by hard
attention.

Second, this work inherits the assumptions made in the
proof of RNN Turing completeness. For the proof of RNN
computational universality in [13] to hold, infinite precision,
infinite output space, and value rationality are required.

These assumptions are typical in theoretical work regarding
the transformer architecture. However, future work should seek
to characterize transformer computational expressivity under
relaxed assumptions.

VI. DISCUSSION

A. Relationship Between Model Dimensionality and Turing
Completeness

Recall the requirements discussed in subsection II-C. An
interesting consequence of these requirements is that, for a
decoder-only transformer to be Turing complete, it must have
dead space in the model dimension. That is, it must satisfy
dmodel > dembed. This dead space is necessary to present both
the last output, ht, and the current input, xt, to the FFN for
computation of the next value in the sequence. Presentation of
both values can’t be guaranteed without satisfying the above
inequality.

As brief proof by contradiction, assume that we are guaran-
teed to be able to present both ht and the xt without dead space
in the model dimensionality. Since there is no dead space,
every element in the vector is used to embed some piece of
information about the token. To present both the embedding
for the input and the last output to the FFN (without violating
the mentioned requirements) we must compress the input
or the last output. In the case of a dense embedding ie. a
single bit, compression is not possible. Therefore, without the
presence of dead space in the model dimensionality it may be
impossible to present xt and ht to the FFN at time step t.
Therefore, assuming no dead space is required to present both
ht and xt at a single time step leads to a contradiction.

In the case of simulating an RNN, we can say that the
minimum model dimension for xt and ht to be presented to
an RNN simulating FFN simultaneously must be greater than
or equal to twice the size needed to house an embedded token,
dmodel ≥ 2 · dembed. In practice, some embeddings may be
losslessly compressible. However, this assumption does not
hold for all embeddings.

However, direct RNN simulation is sufficient, but not neces-
sary, for Turing completeness. Therefore, the size requirement
for RNN simulation does not imply an equivalent size re-
quirement for Turing completeness. However, the more general
dmodel > dembed does hold.

To see that this is the case, assume that the base embedding
is not compressible. Now assume xt and a state variable rep-
resenting the internal state of a Turing machine is compressed
into a latent sequence presented to an FFN. Assume the Turing
machine’s internal state may be compressed into a single
binary value as a lower bound. The minimum dimensionality
of the latent vector containing the Turing machine state and xt

is dembed+1. Recall, the FFN input dimensionality is required
to be identical to dmodel.

Therefore, for a decoder-only transformer model to be
Turing complete, it must be true that dmodel > d∗embed with
d∗embed being the dimsensionality of the compressed token
embedding.

Interestingly, the inability to recognize PARITY shown in
[14] may be duplicated by showing that arbitrarily long binary
words aren’t compressible to any fixed size d. Consider, if
the input to an attention layer is an n token sequence with
each token encoding a binary value, at most 2d values may be

losslessly compressed for PARITY computation. Therefore, in
the case of hard attention without auto-regression, PARITY
is not feed-forward recognizable if the length of the binary
sequence is greater than 2d.

B. Transformers and Wang’s B Machines

It is important to point out, decoder-only transformer models
do not directly approximate the behavior of Turing machines.
Rather, they are computationally much more similar to the B
machines studied by [12] which have a single tape and are in-
capable of erase or overwrite. By simulating a Turing machine
via B machine, Wang showed that erasure is not necessary for
computational universality. However, he also showed that a B
machine cannot generate tape content identical to that of a
Turing machine in all cases due to the lack of overwrite.

Decoder-only transformers possess additional limitations
beyond those imposed on B machines. While they may read
from any past tape location, (1) they are incapable of writing to
any position on the tape apart from the next available location
and (2) they may not read any position on the tape beyond the
current write pointer location. This constitutes an unexplored
type of theoretical computational machine which we refer to
as causal B machines.

C. Parameter Inefficiency Provenance Conjecture

Based on the proof herein, small decoder-only transformers
are computationally universal. However, due to the significant
limitations on causal B machines, format restrictions imposed
by an application (like sequence-to-sequence modeling) may
prevent the architecture from utilizing arbitrary recursion to
perform Turing complete computation. Given a single tape
and single permissible write location, intermediate compu-
tations which do not fit the application output format will
either violate the application or the application output format
will prevent the intermediate computation result from being
written.

We conjecture that the strong link between model size and
model effectiveness may be related to application induced
limitations which force the decoder-only model to induce
more sophisticated operations rather than learning to compose
them from “basic steps” unfolded through recursion. This is
empirically plausible given the emergence of chain of thought
[2] as a viable option in the largest of models. Our future work
will address this question more thoroughly.

VII. CONCLUSION

We have shown that the decoder-only transformer architec-
ture is capable of simulating an arbitrary RNN and is therefore
computationally universal under reasonable assumptions. This
result holds even for a 1 layer transformer with a single
attention head so long as the model dimensionality exceeds
the dimensionality of the minimum token embedding.

However, this result is limited by the fact that the analysis
does not consider the limitations imposed by sequence-to-
sequence modeling on the output format which may impact
the in situ computational expressivity of the architecture.

Therefore, future work seeking to improve the parameter
efficiency of decoder-only transformers should consider the
effect of output format restrictions and potential architec-
tural changes. Changes, like the inclusion of an additional
tape (decoder output location), may permit recursion without
dimishing the model’s aptitude as a language model.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[2] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou,
“Chain of thought prompting elicits reasoning in large language models,”
arXiv preprint arXiv:2201.11903, 2022.

[3] M. C. Rillig, M. Ågerstrand, M. Bi, K. A. Gould, and U. Sauerland,
“Risks and benefits of large language models for the environment,”
Environmental Science & Technology, vol. 57, no. 9, pp. 3464–3466,
2023.

[4] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and
N. Shazeer, “Generating wikipedia by summarizing long sequences,”
arXiv preprint arXiv:1801.10198, 2018.

[5] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving
language understanding by generative pre-training,” OpenAI blog, 2018.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[7] OpenAI, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023.
[8] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,

“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[10] J. Pérez, J. Marinković, and P. Barceló, “On the turing completeness of
modern neural network architectures,” arXiv preprint arXiv:1901.03429,
2019.

[11] S. Bhattamishra, A. Patel, and N. Goyal, “On the computational power of
transformers and its implications in sequence modeling,” arXiv preprint
arXiv:2006.09286, 2020.

[12] H. Wang, “A variant to turing’s theory of computing machines,” Journal
of the ACM (JACM), vol. 4, no. 1, pp. 63–92, 1957.

[13] H. T. Siegelmann and E. D. Sontag, “On the computational power of
neural nets,” in Proceedings of the fifth annual workshop on Computa-
tional learning theory, pp. 440–449, 1992.

[14] M. Hahn, “Theoretical limitations of self-attention in neural sequence
models,” Transactions of the Association for Computational Linguistics,
vol. 8, pp. 156–171, 2020.

[15] C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar,
“Are transformers universal approximators of sequence-to-sequence
functions?,” arXiv preprint arXiv:1912.10077, 2019.

[16] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[17] A. M. Turing, “Computability and λ-definability,” The Journal of
Symbolic Logic, vol. 2, no. 4, pp. 153–163, 1937.

[18] J. P. Neto, H. T. Siegelmann, J. F. Costa, and C. S. Araujo, “Turing
universality of neural nets (revisited),” in Computer Aided Systems The-
ory—EUROCAST’97: A Selection of Papers from the 6th International
Workshop on Computer Aided Systems Theory Las Palmas de Gran
Canaria, Spain, February 24–28, 1997 Proceedings 6, pp. 361–366,
Springer, 1997.

[19] D. Schuurmans, “Memory augmented large language models are com-
putationally universal,” arXiv preprint arXiv:2301.04589, 2023.

	Introduction
	Background
	Disambiguating Decoder-Only Transformer Models
	Modifying the Vanilla Transformer to form a Decoder-only Model
	Differentiating Encoder-only and Decoder-only Models

	Related Theoretical Work on Transformers
	Required Conventions Inherited from Vanilla Transformers

	Definitions & Approach
	Embedding & Position
	Decoder-only Transformer Architecture
	Self-Attention
	Feed Forward Network
	Single Layer Decoder-Only Models
	Multi-Layer Decoder-Only Models
	Proof Approach

	RNN Simulation by Decoder-Only Transformer
	Proof
	Theorems

	Proof Explanation
	Vector Elements
	Attention
	FFN Operations
	Summary
	Assumptions & Limitations

	Discussion
	Relationship Between Model Dimensionality and Turing Completeness
	Transformers and Wang's B Machines
	Parameter Inefficiency Provenance Conjecture

	Conclusion
	References

