Introduction

to PLC
Automation

Practical Excercises

First Edition

Dr. Jesse Roberts
Cookeville, TN

Self Publishers Worldwide
Seattle San Francisco New York
London Paris Rome Beijing Barcelona

This book was typeset using ITEX software.

Copyright (C) 2024 Dr. Jesse Roberts
License: CC BY-SA 4.0

Preface

This book is a collection of exercises that are based on real scenarios and prob-
lems frequently encountered in industrial automation. By completing the ex-
ercises here, students will be ready to solve basic problems related to PLC
programming and industrial automation.

Each exercise has an associated starter file. The collection of starter files
can be found here.

The exercises are intended to be completed after having watched the asso-
ciated free video lecture available lherel

The first chapter is the first exercise in this book and details the process
of downloading a program to the PLC and HMI and then performing edits to
those programs. This chapter will likely need to be referred to at the beginning
of many exercises. However, rather than repeating the instructions, readers are
expected to refer to the first chapter (Lab 0) as necessary for download process
details.

About the Author

Jesse Roberts completed his bachelor’s and master’s at Tennessee Technological
University in Electrical Engineering. He spent 7 years as a senior controls
engineer in industrial automation. He developed a corporate course for the
onboarding of new engineers, was the co-op education program manager, and
taught the PLC automation course at Tennessee Technological University for 5
years.

After leaving the automation sector, he completed his PhD in computer
science with a focus on artificial intelligence and natural language processing
at Vanderbilt University before becoming an Assistant Professor of Computer
Science at Tennessee Technological University.

The author can be reached through his personal website here.

https://github.com/JesseTNRoberts/Introduction-to-PLC-Automation/
https://www.youtube.com/watch?v=DroUeHOe4lw&list=PL08zDkmLSnzFXJt9FVlfNPbG_KlcI_Qck&pp=gAQBiAQB
http://www.jessetnroberts.com

vi

Table of Contents

I _Tab 0l 1
[L1 Introductionl. L 1
I1.1.1 How togetcredit|. 1
[1.1.2 20 minute grace period|. 2
............................. 2
[1.1.4 Labagreement| 2

1.2 Downloading to the PLC| 3
[1.2.1 Get the lab files from ilearnl 3
11.2.2 Open Studio 5000 3
[1.2.3 Set the project path| 3
|What is setting the project path?f. 4

|How do you set the project path?|. 4

[1.2.4 Download to the PLCI 5
12,5 Fmnsure that the PLC isin run model 6
[1.2.6 Open the Main Routine] 7
127 GoOnlinel. 7

1.3 Downloading to the HMI} 7
I1.3.1 Open FactoryTalk View Studiof 8
11.3.2 Restore the HMI application| 9
1.3.3 Open the Restored Application| 10
[1.3.4 Communication Setup| 10
1.3.5 Create the Runtime Application| 10
11.3.6 Download the HMI application| 11
11.3.7 Testing the HMI application] 12

1.4 Online ladder program edits| 13
I1.4.1 What’s wrong with the logic| 14
|What does the code mean logicallyf 15

What should it bedf. oL 15

[[42 Tet'sfixthiscodd 16
IMaking the rung editable] 16

|Adding another OR condition|. 16

[Submitting online edits| 17

1.4.3 Isit Fall yet?, 17

vii

viii TABLE OF CONTENTS

[L.5 Offline ladder program edits|
I1.5.1 How do you know that it is Fall?]

5.2 Tlet'scodeitl.
Go Offfinel

Go Onlinel

11.5.3 Isit Fall yet?,

[1.6 Toggleabit|
11.6.1 Toggle December|

13.1.2 Acceptable Instructions|
13.1.3 How to Interface with the PLC and HMIl
3.1.4 How to get credit|.
13.1.5 20 minute grace period|.
3.1.6 Lab agreement|
I;i,z :‘2“2”:“““! l)!z!!l g:s!llll!!llf:ll
3.2.1 How should the logic work?
13.2.2 The Inputs and Outputs|.
3.3 Storefront Door Controller... again|
3.3.1 How should the logic work?
13.3.2 The Inputs and Qutputs|.
B4 Sawmill controflerd Lo L
13.4.1 How should the logic work?|
3.4.2 The Inputs and Outputs|.
...............................
13.5.1 How should the logic work?|
13.5.2 The Inputs and Outputs|.

18

23
23
23
23
24
24
25

TABLE OF CONTENTS

4.4.1 Problem 2... Againl 0oL

b.1.4 Howtoget credit|.,
p.1.5 20 minute grace period|. Lo
b.1.6 Labagreement|
5.2 Box Transfer System|
p.2.1 How should the logic work?|
5.2.2 The Inputs and Outputs|.
.3 Challenge - Toggle| 0.
b.3.1 How should the logic work?|
5.3.2 The Inputs and Outputs|.
p.4 How to create a boolean tagf.

6.2 Background| o
6.3 Problem 11

7.1.2 Acceptable Instructions|
[7.1.3 Labagreement|
[(.2 Transmission Makers of Americal
[7.2.1 How should the logic work?|
[7.2.2 The Inputs and Outputs|.
7.3 Challenge - Modulo|.
|7.3.1 How should the logic work?|
[7.3.2 The Inputs and Outputs|.
[7.4 7 Boxes and Counting|
[7.4.1 How should the logic work?|
[7.4.2 The Inputs and Outputs|.
7.5 How to create a boolean tagf.

ix

36
37
37

39
39
39
39
40
40
40
40
41
41
42
42
43
43
43

45
45
45
45
46
46

TABLE OF CONTENTS

8 Pre-Lab 4&5| 55
8.1 Introductionl. 55
8.2 Background| 55
B3 Problem 1. . .« o o oo 55
BAIProblem 21 . . . o o v oo e 56
8.5 Problem 3 - Read the Manuall 56

[O_TLab 4&5] 57
01 Tntroductionl. 57

DIT TabFiled 57
9.1.2 Acceptable Instructions| 57
9.1.3 Lab agreement| 57
9.2 7 Boxes and Counting... Again| 58
9.2.1 How should the logic work?| 58
9.2.2 The Inputs and Outputs|. 59
9.3 Challenge - The Maze Runner|{. 60
9.3.1 How should the logic work? 60
9.3.2 The Inputs and Outputs|. 60
9.4 Double Challenge - Simple Waveform|. 61
9.4.1 How should the logic work?| 61
9.4.2 The Inputs and Qutputs|. 61
9.5 How to create a boolean tag|. 62

10 Pre-Lab 6&5| 65
[0 Tntroductionl.o . 65
110.2 Background|o oo 65

............................... 65
10.4 Problem 21 66
[[0.5 Problem 3 - Read the Manuall 66

11 Lab 6&7 67

1.1 Introductionl. 67
Q111 Lab Files 67
[11.1.2 Acceptable Instructions| 68
[11.1.3 Lab agreement| 68

[11.2 Editing the HMI Application| 68
[11.2.1 General Process to Developing an HMI application| 69

[Start by creating your tags in the PLC|. 69
Adjust the HMI communication setup| 69
Creating the object(s)| 69
Connect the object to the desired PLC tagl 70
|Create the Runtime Application| 71
[Download the HMI application| 72

[11.3 Challenge - StopWatch|. oo 72
IT.3.1 Hints

TABLE OF CONTENTS

[11.3.2 The Inputs and Outputs|.
[11.4 Blinking Lights] oo oo
IT471 Hints

L1b C A L. See You Later o o oo o000 oo
[11.5.1 From Functional Description to Code|
[11.6 What’s the combination again?|
[11.6.1 From Functional Description to Code|

113.1.2 Acceptable Instructions|
113.1.3 Lab agreement|
|113.2 Challenge - Break week|
13.3 Wamapoke County Contract|.
[13.3.1 Specifications for the Pressure Road Lube Maching|

[15.1.2 Acceptable Instructions|

15.1.3 Lab agreement| L.
|15.2 Simple State Machinel 000
115.2.1 Plain English Description|
|15.3 Challenge - Toggle... Again|

[15.4 Wamapoke Stoplight|
115.4.1 Plain English Description|

|15.5 Challenge - The Final Problem|
115.5.1 Plain English Description|

xi

xii TABLE OF CONTENTS

115.5.2 How to make Sherlock movel. 92

[16 Lab Final 95
[16.1 Introductionl. 95
06.1.1 Lab Files 95

116.1.2 Acceptable Instructions| 95

116.1.3 Lab agreement| 95

META TN . o et 96

116.1.5 Lab Final Grading| 96

116.2 Winnipeg Industriall 00000 96
116.2.1 List of instructions to assemble spline shatt| 97

116.3 Grading Rubric| oo oo 100

Chapter 1

Lab O

1.1 Introduction

In this lab you gain experience with:

1.

-~ W

How to download project files to the PLC
How to download applications to the HMI
How to make online edits to the ladder program
How to make offline edits to the ladder program

How to toggle a bit

In this lab you will be exposed to:

1.
2.
3.
4.
D.

Ladder logic

Logical OR and Logical AND
Normally closed contact (XIO)
Normally open contact (XIC)
Output coil (OTE)

1.1.1 How to get credit

Each lab after this will require each student to submit the completed pre-lab
before they are allowed to begin working on the lab. The pre-lab must be
submitted to the TA before beginning work on the lab. If it is not
complete then you will be required to complete the pre-lab before you are

allowed to begin working on the lab.

2 CHAPTER 1. LAB O

In order to get credit for completing each part of this lab, you must per-
sonally read and complete each portion of the lab and demonstrate
the completion to the TA. Each section has one or more signature slots
that must be signed by the TA to confirm that the section was completed.
Each section is worth equal credit.

1.1.2 20 minute grace period

To receive full credit, the lab must be completed and demonstrated during the
assigned lab time. However, if you cannot complete the lab within that time,
you can complete and demonstrate the lab within the first 20 minutes of the
subsequent lab time and still receive full credit. If the lab is not completed
within the assigned lab time and is not completed within the 20
minute grace period, then the lab is considered late. If you submit the
lab late, then there will be a 20% deduction compounded weekly.

1.1.3 Safety

The PLCs and equipment in this lab use 120VAC and 24VDC. The equip-
ment is considered finger safe, which means that accidental contact with the
electrical circuitry is unlikely. However, there are small gaps around the con-
nections to the PLC and other equipment which expose small portions of bare
wires or bare metal from the bussbars.

DO NOT TOUCH ANY BARE WIRES or METAL EXPOSED AROUND
BUSSBARS! YOU WILL BE SHOCKED!

1.1.4 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person
is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help. Further, they acknowledge all course and
safety information which has been given.

Student (Print & Sign):

1.2. DOWNLOADING TO THE PLC 3

1.2 Downloading to the PLC

In this section you will download the Lab 0 project to the programmable logic
controller (PLC). Be careful not to mix up downloading and uploading.
Downloading is pushing code into the PLC. Uploading is pulling the code from
the PLC into the computer. In this class you should never upload.

The code that is in the PLC when you arrive to the lab is most likely not
the code that you left in it from the previous lab. So, make sure that you save
your lab progress to the lab drive or to a flash drive for safe keeping.

This section serves as general instructions for downloading to the
PLC. Refer to this lab manual in future labs if you forget how to download to
the PLC.

1.2.1 Get the lab files from iLearn

In this lab you will often be working with a pre-made lab PLC and HMI file.
As the semester progresses this will change. However, for the next several labs
you will need to logon to ilearn and download the necessary lab files to the lab
PC at the beginning of lab. Download all the files in the Lab0 ilearn folder
under content now.

1.2.2 Open Studio 5000

Studio 5000 is the development environment used to modify Allen Bradley PLC
ladder logic and download to the PLC. To open the program, click the windows
icon in the bottom left and navigate to a folder called Rockwell Software.
Open the folder and select Studio 5000. This will launch the software.

A splash screen like the one in Fig[I.T] should appear. Select Existing
Project. From the drop down that appears, select the option that says Project
File. Navigate to the Lab PLC project that was downloaded from iLearn and
select the file, then click Open.

1.2.3 Set the project path

Now that Studio 5000 has been launched and the appropriate Lab project has
been opened, you have to point Studio 5000 at the PL.C which you will be using.
This is referred to as setting the project path. This is a very important
step!. Your classmates and TA will not be happy with you if you do not
perform this step correctly, as it will cause you to download to someone
else’s PLC.

—Note 1— Accidents happen and you will be forgiven for acci-
dentally downloading to the wrong PLC. This happens to pro-
fessionals as well. However, if the TA believes that you did this
intentionally, you may be asked to leave the lab.

4 CHAPTER 1. LAB O

Studio 5000 Splash Screen

Figure 1.1: Studio 5000

What is setting the project path?

PLCs on a network are identified by their internet protocol (IP) address. The IP
address for each of the PLCs in this lab corresponds with the lab seat number.
Refer to TabldL.1] to identify which PLC IP address corresponds with your seat
number.

Setting the project path is what Allen Bradley calls choosing the
IP address of the PLC to which you will download code.

Table 1.1: PL.C IP addresses
Seat # IP Address ‘ Seat # IP Address

1 192.168.100.201 2 192.168.100.202
3 192.168.100.203 4 192.168.100.204
) 192.168.100.205 6 192.168.100.206
7 192.168.100.207 8 192.168.100.208
9 192.168.100.209 10 192.168.100.210
11 192.168.100.211 12 192.168.100.212

How do you set the project path?

To set the project path, select the item in the menu bar called Communica-
tions. From the drop down, select Who Active. Here is where you will choose
the PLC project path. Scroll to the PLC with the IP address associated with
your seat and click the PLC to highlight it. Then select Set Project Path.

1.2. DOWNLOADING TO THE PLC 5

—Note 2— If after highlighting the PLC, the option to set
project path is still grayed out then you have either not selected

the correct item or the project path is already pointing at your
PLC.

There is a plus icon beside the PLC that allows you to view items associated
with that particular PLC. However, to set the project path you must select the
outer most object. If this is confusing, refer to Fig[T.2]

Who Active

& Wha Active [RSLinx Classic) m] ®

Autobrawse Refresh (&}

I 192.168.100.108, PanelView Plus 7 Std 700 DLR, PanelView A Go Online |
1 192.168.100.110, PanelView Plus 7 Std 700 DLR, PanelView
= 192.168.100.111, PanelView Plus 7 Std 700 DLR, PanelView Uplozd...
£ 192.168.100.112, PanelView Plus 7 Std 700 DLR, PanelView
SR8 192.168.100.201, 1769-L18ERM-BB1B LOGIX5318ERM, 176|
é A3 PointBus, PointlQ Chassis 10 Slot Update Firmware...
i [l 0D, 1769-L18ERM-BB1B LOGIX5318ERM, PLC_Lab
j/ 01, Unrecognized Device, 24VDC 16PT INPUT & 1t
w 4] 02, PointlO 2pt Analog Voltage Input, 1734-1E2V 2 Help
i] 03, PointlQ 2pt 24Vdc Analog Voltage Output, 173
i i) 04, PointlO 2pt TC/mV Input, 1734-IT21 2pt TC Inp
- [l 192.168,100.202, 1769-L18ERM-BB1B LOGIX3312ERM, 176
M 167 1A% 100 N2 1TAG_I 18FRKA_RRIR | NAEIVEI1RERM 176 4
>

Download

Close

<

Path: AB_FTHIP-1192.168.100.201 Set Project Path

Path in Project: AB_ETHIP-11192, 168, 100,202
Clear Project Path

Figure 1.2: Who Active

~—Note 53— In Figl1.9 the user was sitting in seat number 1.
You most likely will not select the same PLC IP ad-
dress shown in the image. Refer to Tabld1.1]to verify which
IP address is associated with your seat.

Do not select any other option other than Set Project Path! After
setting the project path, the option will be greyed out. Close the dialog window
after setting the project path.

1.2.4 Download to the PLC

It is now time to download to the PLC. Again click the Communications
option in the menu. From the dropdown, select Download.

—Note 4— If the download option is grayed out, then you have
either not set the project path or you are currently online with
the PLC.

If you are online with the PLC, you will have to go to the Communications

6 CHAPTER 1. LAB O

menu and select Go Offline before being able to Download.

Download Dialog

Download X

Download offine project 'PLC_Lab' to the controller,

Connected Controller:

Mame: PLC_Lab

Type: 1769 18ERM/E CompactLogix™ 5370 Controller
Path: AB_ETHIP-1192.168.100.201

Serial Number: 60ED7614

Security: Mo Protection

1 The controller is in Remote Run mode, The mode will be changed to
Remote Program prior to download.

1 DANGER: The controller being downloaded to is the system time
master. Servo axes in synchronized controllers, in this chassis or
other chassis, may be turned off.

1 DANGER: Unexpected hazardous motion of machinery may occur.

Some devices maintain independent configuration settings that are
not loaded to the device during the download of the contraller.

Verify these devices (drives, network devices, 3rd party products)
have been properly loaded before pladng the controller into run
mode.

Failure to load proper configuration could result in misaligned data
and unexpected equipment operation.

Cancel Help

Figure 1.3: Download dialog

After selecting to download the code, a dialog window will appear. Click
Download at the bottom of the dialog. For reference see FiglT.3|

—Note 5— In an industrial environment downloading can cause
things to behave dangerously but in this lab environment we can
ignore this warning.

—Note 6— Before downloading the code to the PLC, Studio
5000 will automatically compile what you have written. If there
is a compilation error, you will be informed and the download
will be aborted.

1.2.5 Ensure that the PLC is in run mode

After downloading the code to the PLC the code will not execute until the PLC
is in run mode. Typically, after downloading to the PLC a dialog window will
appear asking if you would like to return to run mode. Select, yes.

1.3. DOWNLOADING TO THE HMI 7

If for some reason the prompt does not appear, go to the Communications
menu and select Go Online. Then go to the Communicaitons menu and select
Run Mode.

1.2.6 Open the Main Routine

To view the code that is in the project, open the tasks dropdown in the left
side menu. Here is where "routines” are kept. In each lab there will be a Main-
Routine that houses the code. Refer to Fig[T.4] Double click the MainRoutine
to open and view the code.

In Figll.h the code housed in MainRoutine is displayed. Notice there is a
comment denoting the rung which you will be editing later in the lab. Also
notice that the side bars of the ”ladder” are green. This means that this code
is currently ”being scanned” or ”being executed” by the PLC. If the PLC were
not in run mode then the side bars would not be green. Also, if the user were
not online with the PLC the side bars would not be green.

—Note 7— The side bars being green is meant to signigy that
they are energized. Ladder logic is intended to be read like an
electrical schematic. Things that are green are energized. No-
tice that the normally open contacts associated with Lab0.Octoper
and Lab0.November are grey as is the coil associated with
Lab0.1ts_Fall. This means that these are not energized.

1.2.7 Go Online

After downloading and ensuring that the PLC is in Run Mode, it is time to Go
Online. Going online allows you to see the actual current state of the PLC and
monitor the code as it executes. Go to the communications menu and
select Go Online.

—Note 8— The code that is in Lab 0 is supposed to decide if
it is Fall based on the month. However, you may notice that
there is a logical error. We will fix this later on.

TA Signature 1:

1.3 Downloading to the HMI

PLCs work hand in hand with the human machine interface (HMI). The HMI
is how operators are able to give input to and view the state of the machine. In

8 CHAPTER 1. LAB O

Tasks Dropdown

4 Controller PLC _Lab S
<1 Controller Tags
Controller Fault Handler
Power-Up Handler
r Tasks
4 7% MainTask
4 L MainProgram
< Parameters and Local Tags
Unscheduled
4 Motion Groups
Ungrouped Axes
P Assets
. Logical Model
P I/ Configuration
4 B3 Pointl0
FE [0] 1769-L13ERM-BE1B PLC_Lab
4 Embedded /0 w

Type Ladder Diagrarn (Main)
Descripticn

Program MainProgram
Mumber of Rungs 2

Figure 1.4: Tasks Dropdown and Main Routine

this section you will learn how to restore an archived HMI application, generate
a runtime application, and download the runtime application to the HMI.

1.3.1 Open FactoryTalk View Studio

The software used to edit HMI applications and download those applications
to the HMI is called FactoryTalk View Studio. Click the windows icon in
the bottom left and navigate to FactoryTalk View Studio.

When the program launches, a dialog will appear asking if you would like
to open an application or create a new application. The HMI files that we
distribute cannot be opened through this dialog window. Click cancel. This
will close the dialog window.

1.3. DOWNLOADING TO THE HMI 9

The Lab0 MainRoutine

Figure 1.5: The code housed in the MainRoutine

—Note 9— To distribute HMI files they must be distributed as
“backups”. This is an odd idiosyncrasy of the FactoryTalk View
Studio. These backups can’t be opened through the initial dialog
window. Rather, they must be “restored”.

1.3.2 Restore the HMI application

To restore the HMI application that you downloaded from iLearn, go to the
tools menu and select Application Manager. This will open the Facto-
ryTalk View ME Application Manager. This is actually a separate program
that is launched. Highlight the button beside Restore Application and
click next.

You are then prompted for the location of the application archive. Click the
box with the three periods (ellipse) to open a file explorer windown.
Navigate to the application archive file downloaded from ilLearn open the
file. This will return you to the FactoryTalk View ME Application Manager
Manager. Click next.

You are now prompted for a name to be given to the application. Enter
Lab0 and click finish.

—Note 10— You may be prompted to verify that you are ok
with overwriting an existing HMI application with the same
name. Be aware that if you have made changes to the HMI
application and reopen the distributed archive file and overwrite
your previous application, you may lose progress.

10 CHAPTER 1. LAB O

—Note 11— Sometimes when you attempt to restore an appli-
cation and give it a name that is already used, Factory talk will
not be able to overwrite the other application. In this case, give
the application a name which ends with your tech username.
ie. Lab0_jtroberts.

After following all the above steps, the FactoryTalk View ME Application
Manager will return to the initial screen. Close the FactoryTalk View ME
Application Manager.

1.3.3 Open the Restored Application

Once the application archive file has been restored, the application can be
opened. Go to the file menu and select Open Application. In the dialog
that appears, find and highlight the application name that you have given
to the application that was restored (should be Lab0). Click open.

1.3.4 Communication Setup

The HMI needs to be able to write and read information from the PLC. For
this to be possible, the HMI will need to know the IP address of the PLC.

To point the HMI at the PLC, on the left hand side menu click the plus
beside FactoryTalk linx. Then double click Communication Setup.
Refer to Figll.6]

In the window that opens, navigate to the PLC associated with your lab
seat. Click the plus beside the PLC associated with your lab seat.
Click the plus beside the item named PointBus. Now, highlight the
item 0. Refer to Fig[l.7] for clarification.

—Note 12— In Fig[I.7 the user was sitting in seat number
1. You most likely will not select the same PLC IP
address shown in the image. Refer to Tabld1.1] to verify
which IP address is associated with your seat.

With the correct PLC highlighted, highlight PLC in the Device short-
cuts to the left and click apply. Next, click copy from design to run-
time. Refer to Fig[l.§|to clarify.

The last step to setting up the communication between the PLC and HMI
is to accept the communication settings that you have now put in place. To do
this click OK in the lower right of the window. Refer to Fig[T.9

1.3.5 Create the Runtime Application

Go to the Application menu and select Create Runtime Application. In
the dialog window that appears, select save. This compiles the application
into an HMI ”runtime”. A ”Runtime” is what is downloadable to the HMI.

1.3. DOWNLOADING TO THE HMI 11

HMI Communication Setup Location

——TogreuTTa T
- [& Macros
— Data Log
. .Eyg Data Log Models
=] RecipePlus
E—'d RecipePlus Setup
.-[2] RecipePlus Editor
_.E m FactoreTalk |ing
ﬂﬂ Communication Setup

+- [System

Application I Communicaions

El @F{emwinq shortcut ‘201", which is no longer presern

ﬂ 0 Type here to search

Figure 1.6: Where to find the HMI Communication Setup

1.3.6 Download the HMI application

Go to the tools menu and select Transfer Utility. This opens another appli-
cation which is used to transfer the HMI runtime application to the physical
HMI. In the window that appears do the following:

1. Click the box with the ellipse next to the source file entry bar
2. Select the application you created and click open
3. Check the box beside run application at startup

4. Check the box beside replace communications when transferring
the HMI application

Next you must select the IP address associated with the HMI to which you
would like to download the runtime application. The HMI IP address is also
associated with your lab seat. Refer to Tabldl.2| to find the IP address of the
HMI associated with your lab seat.

After identifying the correct HMI IP address, highlight the appropriate
HMI in the transfer utility window and select download.

12 CHAPTER 1. LAB O

Select the PLC in the HMI Software

Design (Locall | Runtime (Target) |
Copy from Design to Runtime ‘
I 192.162.100.104, PanelView Plus 7 Std 700 DL, Station04 1 ~

] 192.168.100.105, PanelView Plus 7 Std 700 DLR, Stations 1
] 192.168.100.106, PanelView Plus 7 Std 700 DLR, Stations 1
] 192.168.100.107, PanelView Plus 7 Std 700 DLR, Station07 1
I 192.168.100.108, PanelView Plus 7 Std 700 DLR, Station08 1
] 192.168.100.102, PanelView Plus 7 Std 700 DLR, Station09 1
I 192.168.100.110, PanelView Plus 7 Std 700 DLR, Station0 1
Il 192.168.100.111, PanelView Plus 7 Std 700 DLR, Station11 1
5) 192:162.100.201, 1760-L18ERM-BB1B, TTU_PLC_Template
£ PCiaUsE, 17-Node USE CIP Port 14
583 PointBus, Pointl0 Chassis 10 Slot 14

40, 1769-L18ERM-BB15, Jan29)

L& 1, 1768-L1 IBI6XOB16, 24VDC 16PT INPUT & 16T OUTPUT

L0 2, 1734-IE2/C, 1734-IE2V 2 PT VOLTAGE INPUT

L4 3,1734-0E2V/C, 1734-OE2V 2 BT VOLTAGE OUTPUT

L0 4, 1734-1T21/€, 1734-T2) 26t TC Input
- fl_192.168.100.202, 1769-L1ERM-BB18, winfree PLC 1 v
Mode: Online |Browsing: Jan23

Browse...

Figure 1.7: PLC Selection in HMI Communication Setup

—Note 13— You may be prompted that an application with
this name already exists in the HMI. It is ok to overwrite the
existing application.

Table 1.2: HMI IP addresses
Seat # IP Address ‘ Seat # IP Address

1 192.168.100.101 2 192.168.100.102
3 192.168.100.103 4 192.168.100.104
5 192.168.100.105 6 192.168.100.106
7 192.168.100.107 8 192.168.100.108
9 192.168.100.109 10 192.168.100.110
11 192.168.100.111 12 192.168.100.112

1.3.7 Testing the HMI application

Once the download completes and the HMI reboots, the application should be
running on the HMI screen. There should be a button and display.

The button has the text ”check code”. This will check to see if the edits you
make to the code in the coming sections is correct. If it is correct, the HMI will
tell you that you have correctly written the code. If you hold down the button
it will display the word release, instructing you to stop pressing the button.

1.4. ONLINE LADDER PROGRAM EDITS 13

Copy from design to runtime

Devies Shartcuts Design (Local) | Rurtime (Target) |
_Remove | _iers | Cony from Desian to Runtime
-] I 132.168.100.105, PanelView Plus 7 Std 700 DLR, Statio »

151 152.168.100.106, PanelView Plus T Std 700 DLR, Statio
I 192.168.100.107, PanelView Plus 7 Std 700 DLR, Static
[192.168.100.108, PanelView Plus 7 Std 700 DLR, Static
I 152.168.100.108, PanelView Plus T Std 700 DLR, Statio
I 192.168.100.110, PanelView Plus 7 Std 700 DLR, Statio
[192.168.100.111, PanelView Plus 7 Std 700 DLR, Static
3.] 192.168.100.201, 1763-L1GERM-BB1B, TTU_PLC Tem)
£ PCyialsB, 17-Node USE CIP Port 14
-6 PointBus, PointlO Chassis 10 Slot 14
[GRF:4 0, 1769-L13ERM-BE1E, Jan29|
(-5 1, 1765-L1 IB16XOB16, 24VDC 16PT INPUT &
i 0] 2, 1734-IE2V/C, 1734-IE2V 2 PT VOLTAGE INP!
i 4] 3, 1734-OE2V/C, 1734-0E2V 2 PT VOLTAGE O
4, 1T34-IT21/C, 1734172 2pt TC Input
7. fl 182.168.100.202, 1768-L1BERM-BE1B, winfree PLC 1 ¥
>

<

Made: Online Browsing: Jan29
Offine Tag File | Browse...
shortautType [processor -

Figure 1.8: Location of copy from design to runtime button

—Note 14— For the first several labs we will provide an HMI
application that you must download to the HMI. The HMI ap-
plication will work with code built into the lab PLC file that we
provide to notify you if your code is correct and give you feed-
back.

TA Signature 2:

1.4 Online ladder program edits

There are two ways to edit the PLC program. The first is called an online
edit and the second is an offline program edit. Online program edits allow the
programmer to change the code while the PLC is still in Run mode. An offline
PLC program edit requires a download after the edit is complete. Anytime a
programmer downloads to the PLC, the PLC is automatically taken out of Run
mode and put into Program mode. Typically, after the download completes the
programmer is prompted to put the PLC back into Run mode.

—Note 15— In a laboratory environment it is fine to stop the
PLC from executing briefly to perform a download. However,
imagine what would happen if the PLC that is used to control
the Tennessee Tornado at DollyWood were to be taken out of
Run mode in the middle of a ride!

In this section you will be making an online edit to the program to fix the

14 CHAPTER 1. LAB O

Finalize communication setup

4 2, 1734-1E2V/C, 1734-IE2V 2 PT VOLTAGE INPI
4] 3,1734-0E2V/C, 1734-0E2V 2 PT VOLTAGE O E
; i) 4, 17344721/, 1734-1T21 2pt TC Input |
G- fl 192.168.100.202, 1768-L13ERM-BB1B, winfree PLC1 ¥ T”
£ > Q

Mode: Online Browsing: Jan29

Browse. .. |

=

|® -

0K | Cancel | veiity | Help|

Figure 1.9: Ok to finalize HMI/PLC communication setup

logical error in the lab 0 program.

1.4.1 What’s wrong with the logic

Before you can edit the program, you must figure out what is wrong with the
logic. In Fig[I.5] the code is shown. The code is intended to decide if it is Fall
based on the month. This doesn’t mean that it is deciding if it is Fall based on
the current month in the real world, but rather based on which month is ”on”.

The add on instruction (AOI) in the upper right hand corner of Fig called
Lab0_IsItFallYet has several attributes associated with it. Some are inputs and
some are outputs. Particularly, it has the attributes shown in TabldI.3]

To access any of these attributes, the dot operator is used. This is why above
the contact on the left side of the rung of code in Fig[I.5]it says ” Lab0.October”.

Lab0 is the name given to the tag that houses all the memory for the Lab0_IsItFallYet
AOL

1.4. ONLINE LADDER PROGRAM EDITS 15

—Note 16— An AOI (add on instruction) is an instruction
that someone other than Allen Bradley has created. The AOI
requires memory. The way that Allen Bradley allocates memory
is in the form of tags. So, there must be a tag associated with
each occurrence of an AOI in the code.

So, if the "Lab0.October” bit (boolean tag) is true (or on, or energized)
that would mean that it is October. If the ”Lab0.October” bit is on then the
normally open contact it is associated with will be energized. Think of this like
a light switch. If the ”"Lab0.October” light switch is on, then electricity will
pass through it.

Keeping with the electrical analogy, now that the switch (referred to as
a contact) associated with ”Lab0.October” is on (because ”Lab0.October” is
on), then the voltage on the left hand side of the ladder will pass through
to the right hand side of the contact associated with ”Lab0.October”. This
voltage will continue along the rung and be applied to the coil associated with
the attribute ”"Lab0.Its_Fall”. Energizing the a coil associated with a boolean
tag sets the value of the tag to true. So, if ”Lab0.October” is on, then
”Lab0.Its_Fall” is also on.

—Note 17— The left hand side of an instruction (like the nor-
mally open contact associated with ”Lab0.October”) is called
the rung-condition-in. The right hand side of an instruction is
called the rung-condition-out. If a normally open contact is on
(the boolean value associated with the contact is true), then the
rung-condition-outis set equal to the rung-condition-in. How-
ever, if the normally open contact is off (the boolean value asso-
ciated with the contact is false), then the rung-condition-outis
always set to off (or low voltage).

What about if ”Lab0.November” is on but ”Lab0.October” is off? The
rung-condition-outfor the ”Lab0.October” contact is off. However, the rung-
condition-inapplied to the ”Lab0.November” is on so the rung-condition-outis
also on. So, a high voltage is still applied to the ”Lab0.Its_Fall” coil.

What does the code mean logically

This rung of code implements a logical OR. If either ”Lab0.October” OR
”Lab0.November” is true, then ” Lab0.Its_Fall” is also true. If both ”Lab0.October”
AND ”Lab0.November” are false, then ”Lab0.Its_Fall” is false.

What should it be?

In reality, October and November aren’t the only Fall months. September is also
a Fall month. So, we need to modify the logic so that if either ”Lab0.October”
OR ”Lab0.November” OR ”Lab0.September” is true then ”Lab0.Its_Fall” is
also true.

16 CHAPTER 1. LAB O

Table 1.3: Attributes available in Lab0
Attribute Name Data Type Type

Jan Bool Output
Feb Bool Output
March Bool Output
April Bool Output
May Bool Output
June Bool Output
July Bool Output
August Bool Output
September Bool Output
October Bool Output
November Bool Output
December Bool Output
Its_Fall Bool Input

1.4.2 Let’s fix this code

Now that we have identified the problem with the present code, it is time to fix
the problem. To do so we are going to make an online edit to the program.

Making the rung editable

To edit a rung of code while the programmer (you) is online, right click on
the number to the left of the rung and select ”Start pending rung
edits”. Two versions of the rung will then be on the screen. The top version
will have a column of small letter i’s to the left of the rung while the bottom
has a column of small letter r’s to the left of the rung.

Adding another OR condition

We want to add another path for the voltage to flow in the case where ” Lab0.September”
is true. To do this we must first modify the structure of the rung and then add
the instructions.

To modify the structure of the rung, highlight the left side of the rung beside
”Lab0.November”. This is shown in Fig[T.10] The next step, shown in Fig[T.11]
is to add a branch to the rung structure. After the branch is added, it needs
to be adjusted to suit our needs. Click and drag the right side of the branch so
that it matches what is shown in Fig[T.12]

After the rung is structurally changed to suit our purposes, you must add
a contact to adjust the rung logic. Highlight the left hand side of the newly
created branch and insert a normally open contact. Refer to Fig[T.13

At this point there is no tag associated with the contact instruction. So, a
question mark appears above the contact. To complete the changes we need to

1.4. ONLINE LADDER PROGRAM EDITS 17

Highlight the rung

Edthis rung

Edt iis runy

Figure 1.10: Highlight the rung that is going to be structurally modified

Add a branch

92.168.100.201 R

kes b Mo Edits &

“ MainProgram - MainRoutine* x

1 &5 17 %

-~

Qutput, true if the
current month is
October
Lab1.October

Output, true if the
current month is
November
Lab1.November

Figure 1.11: Add a branch to the rung structure

associate this new contact with ”Lab0.September”. To do this, select the ques-
tion mark above the contact and type ”Lab0.September” without the quotation
marks. Press enter when it is fully typed.

Submitting online edits

The last step to completing our online edit is to finalize all the edits in the
program. To finalize the edits click the button shown in Fig[l.14 A dialog
window will appear asking you to confirm that you wish to finalize the edits.
Select yes. If your code did not have any errors, then the code is finalized and
is now running in the PLC.

1.4.3 Is it Fall yet?

Now, press the check code button on the HMI. If you edited the code correctly
then your HMI will say so.

18 CHAPTER 1. LAB O

Click and drag the branch

Output, true if the
current menth is
October
Lab1.0October

Output, true if the
current menth is
MNowvember
Lab1.Movember

Figure 1.12: Click and drag the branch to suit your needs

TA Signature 3:

1.5 Offline ladder program edits

Another way to edit the code, as stated previously, is to take the program
offline. While the code is offline, all rungs (in general) are editable. This is
often convenient if you have several rungs to edit. However, you will have to
perform a download after making offline changes to a program.

In this section you will make an offline edit to the program and download
the edited code.

1.5.1 How do you know that it is Fall?

First, let’s consider a logical question. How does one know that it is Fall based
on the month? Certainly we have found one answer to this question. But is
there another way?

The solution we have used thus far is to check if it is October OR November
OR September. If any of these is true then it is also true that it is Fall.

Instead of using a logical OR we can also use the logical AND to infer the
state of Fall. The logic goes like this: if it is not January AND not February
AND not March AND not April AND not May AND not June AND not July
AND not August AND not December, then it must be Fall.

1.5. OFFLINE LADDER PROGRAM EDITS 19

Add a contact to the branch

YR R P F R La B Y
.201 k2 B id Il b=l fHF B L U
P_ NoEdits B 4 b Favorites” Add-On Alarms Bt TimerCounter
=1 ey 12 Le =] e a g B ab. v w

Edit this rung

Output, true if the
current month is
October
Lab1.October

Output, true if the
current month is
November
Lab1.November

Figure 1.13: Add a contact to the branch

Finalize all edits in program

E; E]\ abrd :h 4

Iz Finalize All Edits in Program (Ctrl+Shift+F)

Finalize all edits in the program

Figure 1.14: Finalize the online program edits

1.5.2 Let’s code it

In order to write this into code, you will have to make use of the normally closed
contact (XIO). The normally closed contact will allow the voltage to pass if the
boolean tag associated with the normally closed contact is false. This allows us
to code not January and so forth.

Structurally, the conditions won’t be in branches that pass around each
other. Rather, each of the normally closed contacts will be placed in series so
that the only way for voltage to get to the coil associated with ”Lab0.Its_Fall”
is for the boolean attributes associated with all non-Fall months to be false.

20 CHAPTER 1. LAB O

—Note 18— If a normally closed contact is on (the boolean
value associated with the contact is true), then the rung-condition-
outis set to false. However, if the normally closed contact is off
(the boolean value associated with the contact is false), then the
rung-condition-outis always set equal to the rung-condition-in.

—Note 19— XIO and XIC are the actual names of the Allen
Bradley normally closed and normally open contacts respec-
tively. The acronym stands for "examine if open” and ”exam-
ine if closed”.

—~Normally closed means that the normal (not energized) state
is closed. This would be like a light switch that allowed current
to flow when it was off but stopped the flow of current when the
switch was in the on position (a backwards light switch). This
is the same as “examine if open”.

—~Normally open means that the normal (not energized) state is
open. This would be like a light switch that allowed current to
flow when it was on but stopped the flow of current when the
switch was in the off position (a typical light switch). This is
the same as “examine if closed”.

Go Offline

To set the PLC to offline, select go offline under the communications menu.

Edit the rung - Delete the conditions

Edit the rung appropriately so that it looks like the one shown in Fig[T.15]

AND based logical approach

Labt Harch Labt Apri Lab1 May Lab1.July

Lab1 August Lab1 December Labits_Fal

Figure 1.15: AND based logical approach to deciding it is Fall

Download

Download the code to the PLC. If you need guidance on the process, refer to

sectionl.2.4]

1.6. TOGGLE A BIT 21

Go Online

Go online. If you need guidance on the process, refer to sectionl.2.

1.5.3 Is it Fall yet?

Again press the button on the HMI. If your new logic is correct then HMI will
display the same message you saw previously when you fixed the logic used to
decide if it is Fall.

TA Signature 4:

1.6 Toggle a bit

Sometimes it is helpful to be able to toggle a bit from off (false) to on (true) as
well as vice versa. Specifically, this is helpful when you want to test a logical
circuit under certain conditions.

1.6.1 Toggle December

Allen Bradley provides a convenient keyboard shortcut to toggle a bit. To
demonstrate this, highlight the normally closed contact associated with ” Lab0.December
With it highlighted, hold the control key and press the T key (ctrl4+T). This
will change the boolean value of ”Lab0.December”.

Now, highlight the coil associated with ”Lab0.Its_Fall” and use the toggle
keyboard shortcut.

Why do you think that it doesn’t appear to work?

—Note 20— The PLC is executing the code continuously while
in Run mode. This execution happens in under a few millisec-
onds on an Allen Bradley PLC. So, if you attempt to toggle the
state of a boolean tag which is being ”driven” (another term for
being associated with a coil), then the PLC quickly overwrites
the result of your toggle command with the logical result from
the output coil.

Demonstrate your ability to use the toggle shortcut to the TA.

TA Signature 5:

22

CHAPTER 1. LAB O

Chapter 2

Pre-Lab 1

2.1 Introduction

Make sure to complete this pre-lab before your assigned lab time. You will not
be allowed to begin working on your lab without having this complete.

Each of the following problems are to be completed on paper. You are not
expected to program these problems on PLC. You are expected to write neat
ladder logic diagrams on paper.

2.2 Problem 1

Convert the code shown in Fig2.1] to a rung of ladder logic.

> while (True) {

if (Pallet_Present and not Station_In_Operation):
Sound_Alarm = True

else:
Sound_Alarm = False

Figure 2.1: Pre-lab problem 1

2.3 Problem 2
Convert the code shown in Fig2.2] to a rung of ladder logic.

23

24 CHAPTER 2. PRE-LAB 1

> while (True){

if (not Robot_Home and
(Door_Open or Person_In_Guard)):
E_Stop = True

else:
E_Stop = False

Figure 2.2: Pre-lab problem 2

2.4 Problem 3

Convert the code shown in Fig[2:3] to a rung of ladder logic.

while (True){

if (Stationl_Home and Station2_Home
and (Station3_Home and Station4_Home
and (Station5_Home or Station6_Home))
or Bypassed):
Safe_To_Move = True

else:
Safe_To_Move = False

Figure 2.3: Pre-lab problem 3

2.5 Problem 4

In electrical engineering, the + operator signifies a logical OR operation. The -
operator is used to signify the logical AND operation. Lastly, the bar over top
of an element(s) signifies the logical NOT operation.

So, the boolean formula shown in Equation2.1] is functionally equivalent to
the sequential logic shown in Fig[2.:4}

D={A+B) C-A4A) (2.1)

Programming this in a single rung of ladder logic in a PL.C would be a bit
difficult however, because the entire formula is negated. So, we need a way to
transform the formula so that the formula is not negated.

DeMorgan’s theorem states the following property for boolean formulae:

(A-B)=A+B (2.2)

(A+B)=A-B (2.3)

2.6. PROBLEM 5 - READ THE MANUAL 25

> while (True){

if (not ((A or B) and C and A)):
D = True

else:
D = False

Figure 2.4: Pre-lab problem 4

Apply DeMorgan’s theorem to transform Equation2.1] into a more ladder
logic friendly format.

Using your transformed version of the formula, write the appropriate single
rung of ladder logic to assign the tag D the value true if Equation2:1]is true.
Else, D should be assigned the value false.

—Note 1— To help you solve this, here is an example of De-
Morgan’s law used to transform a boolean formula.

U=(X-(Y+2)) Original formula
+ (Y +Z) DeMorgan’s applied to outer parenth
+

(Y- Z) DeMorgan’s applied to inner parenth

2.6 Problem 5 - Read the Manual

Read the lab manual. Then write a paragraph about the content and expec-
tations in the lab manual which will convince the grader that you have in fact
read the complete lab manual.

26

CHAPTER 2. PRE-LAB 1

Chapter 3

Lab 1

3.1 Introduction

In this lab you gain experience with:

1.

Analyzing how a ladder logic program will execute

. Using the output coil (OTE)

. Using the normally closed contact (XI1O)

Using the normally open contact (XIC)

. Coding various logical problems

3.1.1 Lab Files

Go to iLearn and download the PLC and HMI files for this lab to the PC. Then
download the PLC project to the PLC and the HMI application to the HMI.

3.1.2 Acceptable Instructions

You may have previous experience with PLCs and that is great! However, you
are only allowed to use the instructions that we have covered thus far in the lab.
So, if you have experience already, consider it a challenge to restrict yourself to
only use the instructions that have been covered thus far in lecture to solve the

problem!

27

28 CHAPTER 3. LAB 1

3.1.3 How to Interface with the PLC and HMI

If you are unclear on any of the following, refer to the Lab 1 Manual:
1. Download to the PLC
2. Go online with the PLC
3. Put the PLC into Run Mode
4. Make online and offline edits to the PLC program
5. Download to the HMI

6. Toggle a boolean tag

3.1.4 How to get credit

Each lab after this will require each student to submit the completed pre-lab
before they are allowed to begin working on the lab. The pre-lab must be
submitted to the TA before beginning work on the lab. If it is not
complete then you will be required to complete the pre-lab before you are
allowed to begin working on the lab.

In order to get credit for completing each part of this lab, you must per-
sonally read and complete each portion of the lab and demonstrate
the completion to the TA. Each section has one or more signature slots
that must be signed by the TA to confirm that the section was completed.
Each section is worth equal credit.

3.1.5 20 minute grace period

To receive full credit, the lab must be completed and demonstrated during the
assigned lab time. However, if you cannot complete the lab within that time,
you can complete and demonstrate the lab within the first 20 minutes of the
subsequent lab time and still receive full credit. If the lab is not completed
within the assigned lab time and is not completed within the 20
minute grace period, then the lab is considered late. If you submit the
lab late, then there will be a 20% deduction compounded weekly.

3.1.6 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person
is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

3.2. STOREFRONT DOOR CONTROLLER 29

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help.

Student (Print & Sign):

3.2 Storefront Door Controller

This section corresponds to the Labl_1 object in the Labl PLC file.

Picture it, you have just graduated and a local grocery store contacts you and
asks if you would be willing to do some freelance engineering/programming
work for them. The first thing they ask you to do is to make their automatic
doors work. They hired a company to install the automatic door system but
the contract was disputed and the company left the work unfinished.

When you arrive at the store you find that the motor that opens the door
is connected to an Allen Bradley PLC! You also find that the sensor used to
detect the presence of a person in front of the door is also connected to the
PLC. The PLC also gets a signal from the security system to know that the
store is open for business. So, all that’s left for you to do is program the PLC
to control the signal that goes to the door.

3.2.1 How should the logic work?

Simple. Any time the store is open and someone is detected in front of the
doors, then the doors should open.
This logic in normal sequential programming would look something like that

shown in Fig[3.]

if (Labl_1.Store_Is_Open and
Labl_1.Person_Present_At_Front_0f_Door):
Labl_1.0pen_The_Door = True
else:
Labl_1.0pen_The_Door = False

Figure 3.1: Sequential logic similar to Labl part 1

3.2.2 The Inputs and Outputs

To access any of the signals listed in Tabld3.1] use the syntax Lab1_1. followed
by the attribute name.

30 CHAPTER 3. LAB 1

Table 3.1: Attributes available in Labl_1

Attribute Name Data Type Type

Store_Is_Open Bool Output
Person_Present_At_Front_0f_Door Bool Output

Open_The_Door Bool Input

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 1:

3.3 Storefront Door Controller... again

This section corresponds to the Labl_2 object in the Labl PLC file.

When you left the grocery store, the door worked beautifully and your cus-
tomer was very happy. However, after a few hours you receive a frantic phone
call from the store manager asking you to return to the store because there was
a problem with the doors!

When you return to the store you find that the store is packed with people
but they are all standing inside looking out the front door like a hoard of
zombies! What could cause such a weird situation? Well, it seems that your
door programming works well at letting people in but since the sensor used
to detect people at the back of the door was never connected you did not
think to add it. So, people can get in but no one can get out because the
Person_Present_At_Front_0f_Door signal doesn’t work for people at the back
of the door.

—Note 1— The first automatic doors were designed by Heron
of Alexandria in the first century AD! He made a mechanism
driven by the heat from a fire that was kindled by priests in
the temple to cause a water counter balance to open the temple
door.

You quickly install the motion detection sensor used to detect the presence
of a person at the back of the door and connect the sensor to the PLC. Now
you have to rewrite your code!

3.4. SAWMILL CONTROLLER 31

3.3.1 How should the logic work?

If the store is open and a person is in front of the doors or in back of the doors,
then the doors should be open.
This logic in normal sequential programming would look something like that

shown in Fig[3.2]

1

2> if (Labl_2.Store_Is_Open and

3 (Labl_2.Person_Present_At_Front_0f_Door or

1 Labl_2.Person_Present_At_Back_0f_Door)):
Labl_2.0pen_The_Door = True

6 else:

7 Labl_2.0pen_The_Door = False

Figure 3.2: Sequential logic similar to Labl part 2

3.3.2 The Inputs and Outputs

To access any of the signals listed in Tabld3.2] use the syntax Lab1_2. followed
by the attribute name.

Table 3.2: Attributes available in Labl_2

Attribute Name Data Type Type

Store_Is_Open Bool Output
Person_Present_At_Front_0f_Door Bool Output
Person_Present_At_Back_0f_Door Bool Output

Open_The_Door Bool Input

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 2:

3.4 Sawmill controller

This section corresponds to the Labl_3 object in the Labl PLC file.

Word got out that you were a good programmer (even with the minor blun-
der with the zombie hoard at the grocery store). Pretty soon you are contacted

32 CHAPTER 3. LAB 1

by the owner of a sawmill that wants to replace the old relay system that
currently controls the saw with a PLC based system.

3.4.1 How should the logic work?

The current system requires the saw operator press the start button to start
the saw. But once the saw is running, it will remain running until the stop
button is pressed. He wants the saw to work precisely the same way after you
are done.

—Note 2— What the sawmill owner wants is referred to in
ladder logic as a seal-in. It is a useful way of keeping a coil
energized (on) once it has been turned on. This is a very im-
portant concept in PLC programming.

This logic in normal sequential programming would look something like that
shown in Fig[3.3]

if ((Labl_3.Start_Saw or Labl_3.Run_Saw) and
not Labl_3.Stop_Saw):
Labl_3.Run_Saw = True
else:
6 Labl1_3.Run_Saw = False

Figure 3.3: Sequential logic similar to Labl part 3

3.4.2 The Inputs and Outputs

To access any of the signals listed in Tabld3.3] use the syntax Lab1_3. followed
by the attribute name.

Table 3.3: Attributes available in Labl.3
Attribute Name Data Type Type

Start_Saw Bool Output
Stop_Saw Bool Output
Run_Saw Bool Input

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 3:

3.5. CHALLENGE 33

3.5 Challenge

This section corresponds to the Labl_4 object in the Labl PLC file.

You decided that to get more publicity you would enter a PLLC programming
competition that sends out challenges once a week. If you win there’s even a
guaranteed job offer! This week the contest judges decided that each competitor
must code a boolean formula into a single rung of ladder logic using only the
normally closed contact, normally open contact, and the coil instructions. The
formula that they have given is D = ((A+ B) - C - A).

The reason that this is challenging is because there is no good way to negate
a group of logical operations in ladder logic in a single rung. The key is to use
Demorgan’s theorem to transform the boolean formula into one that doesn’t
have any logical NOT operations applied to a group.

—Note 3— In electrical engineering, the + operator signifies
a logical OR operation. The - operator is used to signify the
logical AND operation. Lastly, the bar over top of an element(s)
signifies the logical NOT operation.

—Note 4— Demorgan’s theorem states that:
(A-B)

(A+ B)

+B (3.1)

Sy
1.8 (3.2)

—Note 5— This situation comes up often in industrial PLC
applications. Before a robot is allowed to interface with a sub-
section of a machine, the machine must be at rest (otherwise
you risk damaging the machine). This typically involves mak-
ing sure that a group of things are NOT true. Negating the
group is ugly in ladder logic and it is typically better to ap-
ply Demorgan’s theorem to get the boolean formula into a more
manageable form.

3.5.1 How should the logic work?

That’s for you to figure out!

3.5.2 The Inputs and Outputs

To access any of the signals listed in Tabld3.4] use the syntax Lab1_4. followed
by the attribute name.

CHAPTER 3. LAB 1

Table 3.4: Attributes available in Labl 4
Attribute Name Data Type Type

A Bool Output
B Bool Output
C Bool Output
D Bool Input

TA Signature 4:

Chapter 4

Pre-Lab 2

4.1 Introduction

Make sure to complete this pre-lab before your assigned lab time. You will not
be allowed to begin working on your lab without having this complete.

Each of the following problems are to be completed on paper. You are not
expected to program these problems on PLC. You are expected to write neat
ladder logic diagrams on paper.

4.2 Background

When you first start programming PLCs it is easy to mistakenly beleive the
illusion that each rung is executed at the same time as if it really were an
electrical circuit. This is not the case! The PLC scans the rungs in the ladder
program from top to bottom and evaluates the instructions from left to right.
Further, it processes branches within a rung top to bottom as well.

It is very important to consider the order in which things are scanned and
how that will affect the outcome of the logic to be able to succeed in Lab 2.

4.3 Problem 1

Write a simple bit latch sequence that will turn on the following boolean tags
in order: turn_on_stove, cook_food, and turn_off_stove. Your bit latch
sequence should not move to the next step until the associated status bit comes
on. So, after setting the tag turn_on_stove to true, your sequence must wait
for stove_is_on to be true before moving to the next step.
The signals your sequence turns on: turn_on_stove, cook_food, and turn_off_ston
The feedback signals which allow you to move to the next step: stove_is_on,
food_is_cooked, and stove_is_off.

35

36 CHAPTER 4. PRE-LAB 2

4.4 Problem 2

The second problem is to write three rungs of ladder logic using the OTL and
OTU instructions to toggle Toggle_Me on the rising edge of the boolean tag
change. So, Toggle_Me will change state every time change goes from false to
true. You are not allowed to use any instructions that have not been covered
in class (NO oneshots!). You are allowed to use any and all instructions that
have been covered and allowed to create extra boolean tags as necessary.

4.4.1 Problem 2... Again

The purpose of using bit latch sequencing (or any other structured program-
ming) is two fold. First, it is very helpful to have a structure to your path
forward to limit the world of possible solutions. But, secondly and most impor-
tant, using a structured approach to programming allows others to anticipate
and easily understand your code.

Solve the toggle problem described previously using a bit latch sequence.
You may use up to six rungs of ladder logic. To accomplish this, you will
need to have create a fork in the sequence. Then after some action, you can
recombine. To make this more clear, refer to the image in

Sequence that Forks

Contacts |Coils| Math Compare Time/Count Other
Boolean @ M
() Started_step1
@ Send_To_Left
i} C
@ Send_To_Right =
@ Choose_Left_Step2A i} L)
[Started_Step1 e] [Choose_Right_Step2B. ¢] [Right_ls_Full :]
I N :
1t % 0
(®) Choose_Right_Step2B
(S swrn 7] (i3] [somzommn 7] (w3
-
1k 10
A Choose_Right_Step28 e] [sendjo,Left e] [Sendjo,R‘\ ht :}
(@) Choice_Done_Step3 [ant Ste o
o) {} N {}
&
[cnoice,unne,sceps :] [Slart :] [staned,stem :] [chaose,Leﬂ,s«epzA :] [cnaose,mgmjtepzs :] [cnoice,nene,scepa :]
I
® sum I @ C @ @
[Choose_Left_Step2A :] [Choice_Done_Step3 ¢] [Send_To_Left e] [Send_To_Right ¢]
. . I
@ Right_Is_Full 1k U
[Choose_Right_Step2B. é] [Choice_Done_Step3 #] [Send_To_Left :] [Send_To_Right é]
i ©

Figure 4.1: Sequence with a Fork and Recombine

4.5. PROBLEM 3 37

4.5 Problem 3

Write two rungs of ladder logic to implement the challenge boolean formula
from lab 2: D = ((A+ B) - C - A). Do, not use Demorgan’s theorem to change
the form of the equation. Rather, approach the problem in a manner similar to
that shown in the sequential logic in Fig[4.2]

while (True){
if ((A or B) and C and A):
Temporary_Tag = True
else:
Temporary_Tag = False

if (Temporary_Tag):
D = False
else:
D = True

Figure 4.2: Pre-lab problem 3

4.6 Problem 4 - Read the Manual

Read the lab manual. Then write a paragraph about the content and expec-
tations in the lab manual which will convince the grader that you have in fact
read the complete lab manual.

38

CHAPTER 4. PRE-LAB 2

Chapter 5

Lab 2

5.1 Introduction
In this lab you gain experience with:

1. Analyzing how a multi-rung ladder logic program will execute
2. Using the output Latch (OTL)

3. Using the output Unlatch (OTU)

4. Storing the result of a rung in a tag

5. Accomplishing logical functionality using on a multi-scan approach

5.1.1 Lab Files

Go to iLearn and download the PLC and HMI files for this lab to the PC. Then
download the PLC project to the PLC and the HMI application to the HMI.

5.1.2 Acceptable Instructions

You may have previous experience with PLCs and that is great! However, you
are only allowed to use the instructions that we have covered thus far in the lab.
So, if you have experience already, consider it a challenge to restrict yourself to
only use the instructions that have been covered thus far in lecture to solve the
problem!

39

40 CHAPTER 5. LAB 2

5.1.3 How to Interface with the PLC and HMI

If you are unclear on any of the following, refer to the Lab 1 Manual:
1. Download to the PLC
2. Go online with the PLC
3. Put the PLC into Run Mode
4. Make online and offline edits to the PLC program
5. Download to the HMI

6. Toggle a boolean tag

5.1.4 How to get credit

The pre-lab must be submitted to the TA before beginning work on
the lab. If it is not complete then you will be required to complete the pre-lab
before you are allowed to begin working on the lab.

In order to get credit for completing each part of this lab, you must per-
sonally read and complete each portion of the lab and demonstrate
the completion to the TA. Each section has one or more signature slots
that must be signed by the TA to confirm that the section was completed.
Each section is worth equal credit.

5.1.5 20 minute grace period

To receive full credit, the lab must be completed and demonstrated during the
assigned lab time. However, if you cannot complete the lab within that time,
you can complete and demonstrate the lab within the first 20 minutes of the
subsequent lab time and still receive full credit. If the lab is not completed
within the assigned lab time and is not completed within the 20
minute grace period, then the lab is considered late. If you submit the
lab late, then there will be a 20% deduction compounded weekly.

5.1.6 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person
is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help.

5.2. BOX TRANSFER SYSTEM 41

Student (Print & Sign):

5.2 Box Transfer System

This section corresponds to the Lab2_1 object in the Lab2 PLC file. You will
have to create tags to be able to build a bit latch sequence as demon-
strated in lecture.

Congratulations are in order. You have just landed a big contract with a
certain online retailer that ships thousands of packages a day (you know the
one). They have a heavy parcel moving machine that they use to transfer heavy
packages from their conveyor to the truck. However, at the moment the machine
must be controlled by a human operator. The online retailer has tasked you
with automating the task.

5.2.1 How should the logic work?

They want you to write a ladder logic program that will be initiated by a button
connected to a signal in the PLC called Start_Transfer. When Start_Transfer
is pressed, the parcel mover will go vertically up until it reaches a switch called
Transfer_Raised. Then it will move horizontally until it reaches the switch
called Transfer_Extended. Then the transfer will lower until it reaches the
Transfer_Lowered switch.

—Note 1— Machines like this heavy parcel transfer system are
typically pneumatically driven. Fach of the motions made pos-
sible by a pneumatic cylinder. Fach of the cylinders is con-
nected to pneumatic valves which are controlled by the PLC.
Pneumatic cylinder control is the most common way to imple-
ment motion in factories today!

In order to tell the heavy parcel transfer machine to raise, extend, and
lower use the Raise_Transfer, Extend_Transfer, and Lower_Transfer signals
respectively. The transfer movement doesn’t happen immediately. Rather, you
must hold the command for a full second before the action takes place. Play
with the associated HMI display to get an idea of how the transfer movement
happens. When you program this to take place automatically, the command
to take an action should be held until the feedback signal becomes true. ie. if
Raise_Transfer is true for more than 1000 milliseconds then Transfer_Raised
should change to true.

Hint: Make sure that you turn off Raise_Transfer before turning on Lower_Transfe
or nothing will happen. This is also be true with Extend_Transfer and Retract_Transf
but there is no need in this lab to use the Retract_Transfer signal.

42 CHAPTER 5. LAB 2

Hint: You will need to create bits to make a bit latch sequence like the one
discussed in the lecture.

—Note 2— If you energize both sides of a double-acting cylinder
(a pneumatic cylinder that can be extended and retracted) with
air, it will remain stationary.

5.2.2 The Inputs and Outputs

Once you have programmed the bit latch sequence to control the parcel machine,
you should be able to press the start transfer button on the HMI and see the
parcel move to the truck.

To access any of the signals listed in Tabldb.I] use the syntax Lab2_1.
followed by the attribute name.

Table 5.1: Attributes available in Lab2_1
Attribute Name Data Type Type

Start_Transfer Bool Output
Transfer_Raised Bool Output
Transfer_Lowered Bool Output
Transfer_Extended Bool Output
Transfer_Retracted Bool Output
Raise_Transfer Bool Input
Lower_Transfer Bool Input
Extend_Transfer Bool Input
Retract_Transfer Bool Input

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 1:

5.3 Challenge - Toggle

This section corresponds to the Lab2_2 object in the Lab2 PLC file.

Another weekly challenge from the competition for which you signed up! Write
the necessary ladder logic to toggle the boolean tag Toggle_Me anytime the
boolean tag Change has a rising edge.

You are only allowed to use the instructions that we have dealt with in the
lectures up to this points (No oneshots). You are allowed to create extra

5.4. HOW TO CREATE A BOOLEAN TAG 43

boolean tags to help implement this functionality. If you are uncertain how to
create a new boolean tag, refer to section5.4]

5.3.1 How should the logic work?

If Toggle_Me is true and Change goes from false to true then Toggle_Me should
be set to false. If Toggle_Me is false and Change goes from false to true then
Toggle_Me should be set to true.

—Note 38— Toggle functionality is a very common requirement!
Many buttons have toggle functionality and this function is typi-
cally coded in the PLC with the HMI button acting as the change
state input.

5.3.2 The Inputs and Outputs

To access any of the signals listed in Tabld5.2] use the syntax Lab2_2. followed
by the attribute name.

Table 5.2: Attributes available in Lab2_2
Attribute Name Data Type Type

Change Bool Output

Toggle_Me Bool Input

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 2:

5.4 How to create a boolean tag

To create another boolean tag to store the result of a boolean operation. Go
to the left hand controller organizer menu. Under Main Program, double the
item named Parameters and Local Tags. Refer to Figl5.1]

Next, in the window that appears insure that you are on the edit tab of the
parameters and tags window. In Figl5.2] you can see that the edit tab is in a
green box for visibility at the bottom left.

Finally, in the bottom entry in the list of tags enter the details for the tag
that you are creating. The only two items that you should enter are the name
and the datatype. The name must be a name that is not already taken and the
datatype must be BOOL.

CHAPTER 5. LAB 2

Open Parameters and Local Tags

¥ Caontroller PLC_Lab
<! Controller Tags
Contreller Fault Handler
Power-Up Handler
4 Tasks
4 ™% MainTask
4 4 MainProgram
< Parameters and Local Tags
[MainRoutine
Unscheduled

Fi Bdomdimem (e

Figure 5.1: First step to creating a new boolean tag

Create new Boolean Tag

@ Cantroller Tags - PLC_Labicontroller) [1ab3_2 - Logic [MainPragram - MainRoutine [RER SRR REUNSIE S RRT=Y)
Scope: ‘ &, MainProgram v‘ Show: A Tags ¥
Name 2| Usage Alias For Base Tag Data Type Descripti
Replace Me Local BOOL
test Local BOOL
a
« [» \ Monitor Tags |\ Edit Tags /|] <

Figure 5.2: Second and Third step to creating a new boolean tag

Chapter 6

Pre-Lab 3

6.1 Introduction

Make sure to complete this pre-lab before your assigned lab time. You will not
be allowed to begin working on your lab without having this complete.

6.2 Background

In the coming lab we will be using math and compare instructions. However,
there are some instructions that are out of bounds. Specifically, those listed at
the beginning of the Lab 3 manual. Don’t use any of the prohibited instructions
in this pre-lab either.

6.3 Problem 1

The first problem is to calculate the modulo of two operands without using the
modulo command. To get more information regarding the modulo operation in
general, refer to wikipedia.

Write a ladder logic program on paper to calculate the modulo operation
(written as %) of OperandA and OperandB. You are only allowed to use instruc-
tions for truncate, multiply, divide, add, and subtract. You are obviously not
allowed to use the mod instruction. Store the result in Calculated_Modulo.

—Note 1— The TRN instruction can be found in the Allen
Bradley instruction set manual that is available. The trun-
cate instruction removes the decimal portion of a number and
leaves it whole without any rounding. ie. TRN(6.1) = 6.0 and
TRN(6.99) = 6.0

45

46 CHAPTER 6. PRE-LAB 3

6.4 Problem 2

Write a ladder logic program on paper to store x and y coordinates for a given
Angle on the unit circle in x and y respectively.

Hint: The unit circle has a radius of 1. Use this information and the sin/cos
instructions to accomplish this.

6.5 Problem 3 - Read the Manual

Read the lab manual. Then write a paragraph about the content and expec-
tations in the lab manual which will convince the grader that you have in fact
read the complete lab manual.

Chapter 7

Lab 3

7.1 Introduction

In this lab you gain experience with:

1. Arithmetic instructions

2. Compare instructions

w

. Implementing counters without using a counter instruction

4. Implementing modulo functionality without using a modulo instruction

7.1.1 Lab Files

Go to iLearn and download the PLC and HMI files for this lab to the PC. Then
download the PLC project to the PLC and the HMI application to the HMI.

7.1.2 Acceptable Instructions

You may have previous experience with PLCs and that is great! However, you
are only allowed to use the instructions that we have covered thus far in the lab.
So, if you have experience already, consider it a challenge to restrict yourself to
only use the instructions that have been covered thus far in lecture to solve the
problem!

You are not allowed to use the modulo instruction, the counter instructions,
the compute instruction, or the compare instruction. And as always you are
not allowed to use the oneshot instruction (or any of the other rising/falling
edge instructions).

47

48 CHAPTER 7. LAB 3

7.1.3 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person
is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help.

Student (Print & Sign):

7.2 Transmission Makers of America

This section corresponds to the Lab3_1 object in the Lab3 PLC file.

Transmission Makers of America (not a real company) is a tier 1 supplier of
transmissions to automakers in the US. Their transmissions contain multiple
gear packs which engage and disengage to provide the varying speed to torque
relationship that cars require.

Transmissions are difficult to manufacture because they require the gears
to be meshed with very little backlash, and they must not be under a large
amount of squeeze. One way to achieve such a precise fit would be to build
every component absolutely perfectly... But that is extremely cost prohibitive.
So, instead of counting on perfection, Transmission Makers of America use
precisely sized shims to adjust the overall mesh depth of the gears, brilliant!

The problem they are having is that the formula to calculate the correct
size shim is quite complicated. Often when their employees calculate the nec-
essary shim thickness, there are small math errors that render the transmission
unusable. They have contracted you to code the fomula into a PLC and display
the correct shim thickness on the HMI. They have already created the HMI
and it has been provided to you so all you have to do is move the correct shim
thickness into the Shim_Thickness attribute from Tabld7.1]

—Note 1— Backlash is the term used to describe the amount
of separation between two gears. So, given gear A and gear B
which are meshed together, the backlash is the rotation gear A
can have without causing gear B to rotate.

7.3. CHALLENGE - MODULO 49

—Note 2— Tier 1 auto suppliers are those which are under
contract to supply automotive components directly to automak-
ers like GM, Ford, Toyota, etc.

In reality, Transmission Makers of America only has shims in a few sizes.
So, they use the shim that is closest in size to the ideal which will be calculated
in the PLC.

Gear_Diameter - sin (Backlash) - Pinion Gear_Depth

—2.32 7.1
(Drag-Torque - 20) + 3 (7.1)

7.2.1 How should the logic work?

That’s for you to figure out.

7.2.2 The Inputs and Outputs

To access any of the signals listed in Tabld7.1] use the syntax Lab3_1. followed
by the attribute name.

Table 7.1: Attributes available in Lab3_1
Attribute Name Data Type Type

Backlash Real Output
Pinion_Gear_Depth Real Output
Gear_Diameter Real Output
Drag_Torque Real Output
Shim_Thickness Real Input

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 1:

7.3 Challenge - Modulo
This section corresponds to the Lab3_2 object in the Lab3 PLC file.

Another weekly challenge from the competition for which you signed up! Write
the logic necessary to calculate the modulo of two operands while only using the

50 CHAPTER 7. LAB 3

truncate, add, subtract, multiply, and divide instructions. Store the modulo of
OperandA and OperandB in Calculated_Modulo.

You may choose to create a new tag to store a temporary result. This is
acceptable. If you need help creating a new tag, refer to Fig[7.1] If the data you
intend to store in the tag is not a boolean value make sure that the datatype
of the tag you create matches the datatype which you intend to store.
For this problem you will probably need to create a tag with datatype ”Dint”
or possibly "Real”.

—Note 3— The modulo operation is typically denoted by the %
symbol.

—Note 4— The TRN (truncate) instruction can be found in
the Allen Bradley instruction set manual that is available. The
truncate instruction removes the decimal portion of a number
and leaves it whole without any rounding. ie. TRN(6.1) = 6.0
and TRN(6.99) = 6.0

7.3.1 How should the logic work?

The modulo command calculates the remainder from a division operation. So,

given OperandA and OperandB, calculate the remainder from OperandA/OperandB.

As an example, if OperandA is 5 and OperandB is 3, then Operand A%OperandB =

2. Asasecond example, if OperandA is 13 and OperandB is 6, then Operand A%OperandB =
1. As a third example, if OperandA is 14 and OperandB is 7, then Operand A%OperandB =
0. As afinal example, if OperandA is 5 and OperandB is 2, then Operand A%OperandB =

1.

—Note 5— One of the powerful uses of the modulo operation,
is it’s ability to identify positive and negative numbers. Notice
in the final example, 5%2 = 1. If the remainder of any number
is mon-zero after being divided by 2, then that number is odd.

7.3.2 The Inputs and Outputs

To access any of the signals listed in Tabld7.2] use the syntax Lab3_2. followed
by the attribute name.

Table 7.2: Attributes available in Lab3_2
Attribute Name Data Type Type

OperandA Dint Output
OperandB Dint Output

Calculated_Modulo Dint Input

7.4. 7 BOXES AND COUNTING 51

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 2:

7.4 7 Boxes and Counting

This section corresponds to the Lab3_3 object in the Lab3 PLC file.

The online retailer (You signed an non-disclosure agreement so you can’t
speak their name) which contracted you to automate their box moving pro-
cess has now become a repeat customer! They now want you to implement a
counting system to count how many boxes have been transferred to trucks.

They intend to use the box transfer counter as a means of keeping each shift
on track. Each shift is intended to transfer 7 heavy parcels. However, some
shifts are not hitting their goal. So, by having a counter on the screen to keep
track of their progress, the retailer hopes to increase productivity.

They also want you to reset the count when the shift leader hits the reset
button on the HMI. Moreover, they want you to send a signal to the HMI when
the shift goal is met.

7.4.1 How should the logic work?

Each time Start_Transfer goes from false to true, they want you to increment
the value stored in Current_Count to keep track of the number of boxes that
have been transferred. They also want you to reset the counter to 0 whenever
the Reset_Counter tag is true. Finally, if the value in Current_Count is greater
than or equal 7, you should turn on the Shift_Goal_Met bit.

7.4.2 The Inputs and Outputs

To access any of the signals listed in Tabld7.3] use the syntax Lab3_3. followed
by the attribute name.
Write the appropriate logic in the associated rung in the PLC file.

TA Signature 3:

92 CHAPTER 7. LAB 3

Table 7.3: Attributes available in Lab3_3
Attribute Name Data Type Type

Start_Transfer Bool Output
Reset_Counter Bool Output
Current_Count Dint Input

Shift_Goal_Met Bool Input

Open Parameters and Local Tags

¥ Caontroller PLC_Lab ~
1 Controller Tags
Contreller Fault Handler
Power-Up Handler
4 Tasks
4 ™% MainTask
4 4 MainProgram
<} Parameters and Local Tags
& MainRoutine
Unscheduled

Fi Bdomtimem (Creyime

Figure 7.1: First step to creating a new boolean tag

7.5 How to create a boolean tag

To create another boolean tag to store the result of a boolean operation. Go
to the left hand controller organizer menu. Under Main Program, double the
item named Parameters and Local Tags. Refer to Figl7.1]

Next, in the window that appears insure that you are on the edit tab of the
parameters and tags window. In Figl7.2] you can see that the edit tab is in a
green box for visibility at the bottom left.

Finally, in the bottom entry in the list of tags enter the details for the tag
that you are creating. The only two items that you should enter are the name
and the datatype. The name must be a name that is not already taken and the
datatype must be BOOL.

7.5. HOW TO CREATE A BOOLEAN TAG

Create new Boolean Tag

troller Tags - PLC_Lab{controller) [Lal Logic [MainProgram - MainRoutine [RENIEFIETY SR EREET]

Scope | L, ManProgram v‘ Show ‘N\ Tags V”Y_
Name =2|. Usage Alias For Base Tag Data Type Descripti
Replace_Me Local BOOL
test Local BOOL

1 |

<[+ \ Menitor Tags |y Edit Tags || <

Figure 7.2: Second and Third step to creating a new boolean tag

o4

CHAPTER 7. LAB 3

Chapter 8

Pre-Lab 4&5

8.1 Introduction

Make sure to complete this pre-lab before your assigned lab time. You will not
be allowed to begin working on your lab without having this complete.

The coming lab will be extended across two lab times. So, you
will not have a pre-lab next week!

8.2 Background

In the coming lab we will be using timer and counter instructions. Be sure
that you have watched the associated lecture and understand how the timer
and counter instructions work as well as what their associated TIMER and
COUNTER structures contain.

Each of the following problems are to be completed on paper. You are not
expected to program these problems on PLC. You are expected to write neat
ladder logic diagrams on paper.

8.3 Problem 1

Write the ladder logic necessary to implement a stopwatch in PLCfiddle. Submit
your save URL for the PLC fiddle code in the ilearn submission folder. The
stopwatch should have Start, Pause, and Reset tags. The stopwatch must store
the elapsed time in minutes and seconds in tags called Minutes and Seconds
respectively.

The stop watch should begin to accumulate when Start is True. Pause
becoming True should cause the accumulation to be paused. If the Start
button becomes True while the time accumulation is paused should cause the
accumulation to continue without resetting the already accumulated time. The

95

o6 CHAPTER 8. PRE-LAB 4&5

Reset tag should both stop the accumulation of time and reset the currently
accumulated time.

8.4 Problem 2

Write the ladder logic necessary to debounce a signal called input and submit
your save URL for the plc Fiddle code on ilearn. Debouncing is the name given
to the process of making sure that a raw signal has not been erroneously pressed
or that noise has not been misconstrued as an True value.

The approach is simple, use a TON timer (Called an On Delay Timer on
PLC Fiddle) to detect when input has been continuously True for 500ms. When
input has been True for that period of time, turn on the signal input_debounced.
If input changes from true to false, then input_debounced should likewise
change to false.

Hint: The TON instruction will turn the .DN bit to True only after the rung
in condition has been True for an amount of time greater than or equal to the
timer preset value (In PLC fiddle, the .DN bit is called the Q bit). PLC fiddle
timer presets are in seconds rather than milliseconds.

8.5 Problem 3 - Read the Manual

Read the lab manual. Then write a paragraph about the content and expec-
tations in the lab manual which will convince the grader that you have in fact
read the complete lab manual.

Chapter 9

Lab 4&5

9.1 Introduction

In this lab you gain experience with:
1. More arithmetic instructions
2. More compare instructions
3. Implementing counters using the counter instruction

4. Timers

9.1.1 Lab Files

Go to iLearn and download the PLC and HMI files for this lab to the PC. Then
download the PLC project to the PLC and the HMI application to the HMI.

9.1.2 Acceptable Instructions

You may have previous experience with PLCs and that is great! However, you
are only allowed to use the instructions that we have covered thus far in the lab.
So, if you have experience already, consider it a challenge to restrict yourself to
only use the instructions that have been covered thus far in lecture to solve the
problem!

As always you are not allowed to use the oneshot instruction (or any of the
other rising/falling edge instructions).

9.1.3 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person

o7

o8 CHAPTER 9. LAB 4&5

is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help.

Student (Print & Sign):

9.2 7 Boxes and Counting... Again

This section corresponds to the Lab5_1 object in the Labb PLC file.

The online retailer likes the work counting system you put in place to help
them meet productivity. However, when their onsite technicians opened up
the PLC code to make an adjustment, they were confused by what you had
written. The online retailer has requested that you return to adjust your logic
to use an Allen Bradley counter instruction instead of your hand implemented
instruction.

You are a bit annoyed by their request, but they are an important customer.
So, you decided the best course of action is to put on a happy face and adjust
your code.

9.2.1 How should the logic work?

You will have to create a tag of type COUNTER with the name Box_Counter.
To create a tag of type counter, refer to Fig The instructions there are for
creating a boolean tag. So, the only difference will be that you will select the
datatype COUNTER rather than BOOL.

After creating the counter tag, you will have to insert a count up (CTU)
instruction into the logic. When you insert the CTU instruction, there are 3
available fields to customize the instruction to your particular needs. In Fig[9.1]
notice the fields adjacent to the words counter, preset, and accum.

The field beside the word counter is where you are to type the name of the
COUNTER type tag you have created. The preset is the value which you would
like to count up to. So, in this case you are counting up to the value 7. So, the
preset should be 7. You can enter the value 7 directly into the preset field.

The .DN bit which is part of the COUNTER type tag associated with the
CTU instruction will be false until the counter value reaches the preset value.
When the count value reaches the preset value, the .DN bit will become true.
The .DN bit should be useful in deciding when to turn on Shift_Goal_Met.

9.2. 7 BOXES AND COUNTING... AGAIN

CTU Instruction

99

cu

DN

Figure 9.1: Count up instruction

timer instruction.

—Note 1— If you wanted to programmatically set the the preset
value, you can do so by moving a value into the .PRE attribute
which is a part of the COUNTER type tag associated with the

To reset the counter, you will use a reset instruction (RES). This should be

controlled by the Reset_Counter signal.

9.2.2 The Inputs and Outputs

To access any of the signals listed in Tabld9.1] use the syntax Lab5_1. followed

by the attribute name.

Table 9.1: Attributes available in Lab5_1

Attribute Name Data Type Type
Start_Transfer Bool Output
Reset_Counter Bool Output
Current_Count Dint Input
Shift_Goal_Met Bool Input

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 1:

60 CHAPTER 9. LAB 4&5

9.3 Challenge - The Maze Runner

This section corresponds to the Lab5_2 object in the Labb PLC file.

This week the challenge activity is going to be a bit time consuming (Pun!).
This week the contest organizers decided that each contest will have to write a
ladder logic program to guide a ball through a maze... automatically! The maze
and the ball will appear on the HMI and you have to make the ball successfully
navigate the maze!

9.3.1 How should the logic work?

The logic might seem tough at first glance but it’s nothing you can’t handle.
The way to solve this problem is by writing a bit latch sequence. Each step in
the sequence will control a timer and should turn on the appropriate direction
control from Tabld9.2] You stay on that step until the timer completes. Then
you move on to the next step. Hint: You will need one step for each change in
direction that that the gold ball must make. ie. if there were 3 turns, then you
would need a sequence with 3 steps.

Hint: The length of time that each step should be on will be a bit of a
guessing game. You’ll have to figure out how long it takes for the ball to travel
from where it starts to where you want it to be.

As a further requirement, when the Reset becomes true you must unlatch
all the steps in your sequence. When Go becomes true the sequence should start
and continue until the Reset becomes true. Follow the approach to bit latch
sequencing that has been discussed in lecture.

Hint: You will need to use timers to accomplish this task, obviously. You
can complete it with either the TON timer or the RTO timer.

9.3.2 The Inputs and Outputs

To access any of the signals listed in Tabld9.2] use the syntax Lab5_2. followed
by the attribute name.

Table 9.2: Attributes available in Lab5.2
Attribute Name Data Type Type

Go Bool Output
Reset Bool Output
Go_Up Dint Input

Go_Down Bool Input
Go_Left Bool Input

Go_Right Bool Input

9.4. DOUBLE CHALLENGE - SIMPLE WAVEFORM 61

Square Wave (2000ms period)

Square_Wave_In
[
|

0 1 2 3 4 5 6 7 8 9 10 11
Time (seconds)

Figure 9.2: Square Waveform with a 2 second (2000 ms) period

Write the appropriate logic in the associated rung in the PLC file.

TA Signature 2:

9.4 Double Challenge - Simple Waveform

This week we have a rare double challenge. For the second challenge you are
to use timers to make the waveform shown in Fig[0.2] appear in the axes on the
HMI. However, the period of the square wave should be editable from the HMI.

9.4.1 How should the logic work?

The axes shown on the HMI are continuously plotting the state of the Lab5_3
attribute called Square_Wave_In. So, to make a squarewave appear on the
axes, you must set Square_Wave_In to true for an amount of time equal to one
half of the period and then set the tag false for the same amount of time.

There is a field on the HMI that allows the user to edit the value stored
in the Lab5_3 attribute called Period. The value stored in this tag should be
used as the period for your square wave.

9.4.2 The Inputs and Outputs

To access any of the signals listed in Tabldd.3] use the syntax Lab5_3. followed
by the attribute name.

TA Signature 3:

62 CHAPTER 9. LAB 4&5

Table 9.3: Attributes available in Lab5_3
Attribute Name Data Type Type

Period Real Output

Square_Wave_In Bool Input

Open Parameters and Local Tags

4 Controller PLC_Lab ~
<7 Controller Tags
Contreller Fault Handler
Power-Up Handler
4 Tasks
4 2% MainTask
4 L MainProgram
<! Parameters and Local Tags
& MainRoutine
Unscheduled

i Bt e e

Figure 9.3: First step to creating a new boolean tag

9.5 How to create a boolean tag

To create another boolean tag to store the result of a boolean operation. Go
to the left hand controller organizer menu. Under Main Program, double the
item named Parameters and Local Tags. Refer to Fig[9.3]

Next, in the window that appears insure that you are on the edit tab of the
parameters and tags window. In Figl9.4] you can see that the edit tab is in a
green box for visibility at the bottom left.

Finally, in the bottom entry in the list of tags enter the details for the tag
that you are creating. The only two items that you should enter are the name
and the datatype. The name must be a name that is not already taken and the
datatype must be BOOL.

9.5. HOW TO CREATE A BOOLEAN TAG

Create new Boolean Tag

troller Tags - PLC_Lab{controller) [Lal Logic [MainProgram - MainRoutine [RENIEFIETY SR EREET]

Scope | L, ManProgram v‘ Show ‘N\ Tags V”Y_
Name =2|. Usage Alias For Base Tag Data Type Descripti
Replace_Me Local BOOL
test Local BOOL

1 |

<[+ \ Menitor Tags |y Edit Tags || <

Figure 9.4: Second and Third step to creating a new boolean tag

64

CHAPTER 9. LAB 4&5

Chapter 10

Pre-Lab 6&5

10.1 Introduction

Make sure to complete this pre-lab before your assigned lab time. You will not
be allowed to begin working on your lab without having this complete.

10.2 Background

In the coming lab you will continue to use timer instructions, math instructions,
and boolean logic. As an added component, you will also be making the HMI
display screen for each of the portions of the lab.

The coming lab will be extended across two lab times. So, you will not have
a pre-lab next week!

10.3 Problem 1

Describe in detail the functionality for each of these HMI objects:

1.

Momentary Push Button

. Numeric Entry

. Numeric Display

Text Box

. Multi-State Indicator

65

66 CHAPTER 10. PRE-LAB 6&5

10.4 Problem 2

Draw an HMI interface and state all necessary PLC tags required to set the
speed of a centrifuge and display the current speed of the centrifuge. The
operator should be able to enter a speed and then press a button to confirm
that they want to set the centrifuge to the entered speed.

**If you are confused or feel that some information has not been given
which is necessary, make assumptions to fill in the gaps and clearly state the
assumptions that you have made (if any).

10.5 Problem 3 - Read the Manual

Read the lab manual. Then write a paragraph about the content and expec-
tations in the lab manual which will convince the grader that you have in fact
read the complete lab manual.

Chapter 11

Lab 6&7

11.1 Introduction

In this lab you gain experience with:

1. Editing HMI applications

[\N)

. Sending information from the HMI to the PLC

w

. Displaying information from the PLC on the HMI

4. More timers

You will also gain experience with the following HMI objects:
1. Momentary Buttons

2. Numeric Entry

3. Numeric Display

4. Text Boxes

5. Multi-State Indicators

11.1.1 Lab Files

Go to iLearn and download the PLC and HMI files for this lab to the PC. Then
download the PLC project to the PLC and the HMI application to the HMI.

67

68 CHAPTER 11. LAB 6&7

11.1.2 Acceptable Instructions

You may have previous experience with PLCs and that is great! However, you
are only allowed to use the instructions that we have covered thus far in the lab.
So, if you have experience already, consider it a challenge to restrict yourself to
only use the instructions that have been covered thus far in lecture to solve the
problem!

11.1.3 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person
is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help.

Student:

11.2 Editing the HMI Application

In lab 0 you gained experience with downloading an existing HMI application
to the HMI. At this point you should be familiar with how to set the IP address
and download to the appropriate HMI.

In this lab you will be editing an existing HMI application and programming
the PLC so that both meet the requirements laid out in each of the lab exercises
below.

Each of the HMI objects necessary to complete this lab has been demon-
strated in video lecture 6. Refer to the lecture if you are unsure how to create
any of these objects. The video lecture also demonstrates the process to con-
nect these objects with a tag in the PLC, create a runtime application, and
download the runtime application to the HMI. The information in this section
below is intended to reiterate what has already been demonstrated.

11.2. EDITING THE HMI APPLICATION 69

—Note 1— The HMI interacts with the PLC by reading and
writing values in PLC tags. When a button is pressed, the
HMTI typically writes a true value into some boolean tag. When
the button is released, the HMI writes a false value into the tag.
Similarly, when a number is entered into a numeric entry field,
the HMI sets the value of an associated tag in the PLC to the
value which was typed.

11.2.1 General Process to Developing an HMI application

Here a general approach to developing an HMI application is given. This ap-
proach assumes that you have already have an HMI application file and with
the settings chosen appropriately for the HMI to which the application will be
downloaded. In this class, that will always be the case.

Start by creating your tags in the PLC

The HMI software is able to detect the available tags that are present in the
PLC. This makes associating HMI objects with PLC tags easier. However,
for the HMI software to accomplish this, the tags must already exist in the
PLC. For this reason, before you start developing the HMI application,
you should first create any tags that will be used in the HMI application and
download the tags to the PLC. It is not necessary that all your PLC code be
written, only that the tags you intend to use in the HMI are created in the
project and downloaded.

—Note 2— In general it is best to keep your tags very orga-
nized. Often this involves using local tags only, with very few
exceptions. However, in this introductory course, tag location
is not emphasized.

Adjust the HMI communication setup

For the HMI application and the PC software to see the tags which are in the
PLC, you must complete the HMI communication setup as you typically would
before downloading a project to the HMI at the beginning of lab.

Creating the object(s)

After you have created and downloaded the tags you intend to use to the PLC
and have successfully setup the communication for the HMI, it is time to begin
making edits to the HMI application. At this point you should create the on
screen objects that you need.

70 CHAPTER 11. LAB 6&7

Connect the object to the desired PLC tag

After you have created an object, right click the object and open the prop-
erties menu. Here, select connections. Depending on the object you have
created, there may be multiple connection options. The options for a momen-
tary pushbutton are shown in Fig[11.1]

In Fig[IT.T| notice the column labeled " Tag” to the right of the center. The
ellipses is clickable and gives a list of available tags.

Connection options for Momentary Pushbutton

Momentary Push Button Properties *

General States Common Connections

Name |

| Tag / Expression | Tag | Expin
¥ [{[PLC]LabS_2 Taggler.Change_State} |
Indic:atar 4 {[PLC]Lab5_2.Ga}

Cancel Apph Help

Figure 11.1: Count up instruction

After clicking the ellipses, a menu similar to the one shown in FiglIT.2]
should appear. Select a folder on the left and the available tags in that folder
will appear on the right. In Fig[I1.2] the folder called ” Program.MainProgram”
was selected.

Note: Clicking the plus button beside a tag folder will show any nested
folders. However, to see the tags in a folder, the folder itself must be highlighted.

Note: It may be that the HMI software (FactoryTalk View Studio) has not
scanned the PLC to get the most updated list of available tags. If you don’t
see the tags you have created, click the Refresh All Folders button shown in the

11.2. EDITING THE HMI APPLICATION 71

bottom left of Fig If you still can’t find your tags, follow the steps below:

e Make sure you have downloaded the tags to the PLC
e Ensure that the PLC is in Run mode

e Make sure that the communication setup in the HMI has been completed

Tag selection

& Tag Browser ? *
Select Tag
Falders Contents of */::PLC/D0nline/Program: k4 ain
E|-- Lab5 MName AccessRi.. Descripd
=3 PLC & .
: :) area ReadWrite
g glalgnostlc Items @ pi ReadWrite
= Dn :_nebs 1 @ radius ReadWrite
- a
S o LabS_Z @ Replace... ReadWrite
s [l toaine |
w30 Localk1:l
w3 Locak1:0
w23 Locak2:C
w30 Locak2:l
w23 Localk®:C
w30 Locak3:l
w23 Locak3:0
w23 Locakd:C
w0 Locakd:l
.23 Program:MainProgr
(20 system
£ > <€ >

Fiefresh All Folders Tag filter:

Selected Tag

:[PLC]Pragram: b ainProgram. test |

Home area: 4

Earcal Hel

Figure 11.2: Tag Selection

Create the Runtime Application

When you have completed your HMI edits and are ready to download the
application, it is time to create the runtime application.

Go to the Application menu and select Create Runtime Application. In the
dialog window that appears, select save.

72 CHAPTER 11. LAB 6&7

Download the HMI application

Finally, it is time to download the HMI runtime application. Use the transfer
utility as you have previously to transfer the runtime to the HMI.

11.3 Challenge - StopWatch

(Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks professional.)

Another weekly challenge from the competition for which you signed up!
This week you will have to edit both the provided HMI and PLC files to ac-
complish the functionality.

Write a ladder logic program that will act as a stopwatch. Create a boolean
tag called Start that will act as the start button for the stopwatch. The Start
tag must be associated with a button labeled start on the HMI. Your PLC logic
must calculate the time which has elapsed sense the Start button was pressed.

Further, you must create a pause button on the HMI that is connected to a
boolean tag in the PLC that you must also create. The tag should be named
Pause. Your PLC ladder logic must implement pause functionality so that the
stopwatch is paused after the Pause signal becomes true and may be continued
by pressing start again.

Also, you must create a boolean tag in the PLC called Reset. This tag
must be associated with a button on the HMI with the same name. If the
Reset button is pressed then the timer should be reset to zero and stopped.

Finally, the timer will track the elapsed time in milliseconds. You must take
the elapsed time in milliseconds and convert it to seconds and minutes. The
seconds and minutes should be displayed on the HMI.

11.3.1 Hints

The general logic has already been described.

You will need to create a tag of type TIMER. Create the tag and give it
the name Stopwatch_TMR. Use one of the two timer instructions that have been
discussed in lecture. For information regarding the two timer instructions, refer
to the Allen Bradley instruction manual on iLearn.

You will need to create the tags listed in TabldI1.1]in the PLC and use them
appropriately in the HMI. You may create other tags as necessary.

—Note 83— The accumulated time is stored in the .ACC at-
tribute of the TIMER tag. The value stored in the .ACC at-
tribute is the elapsed time in milliseconds. To get the elapsed
time in seconds and minutes is a matter of simple arithmetic.

11.4. BLINKING LIGHTS 73

11.3.2 The Inputs and Outputs

To access any of the tags that you create, use the tag name without any prefix.
This is different from the method used to access tags that were already provided
in previous labs.

Table 11.1: Tags you will create in Lab7_1(Create others as necessary)

Tag Name Data Type

Start BOOL

Pause BOOL

Reset BOOL
Seconds Dint
Minutes Dint

Stopwatch_TMR TIMER

Write the appropriate logic under the associated rung in the PLC file.

TA Signature 1:

11.4 Blinking Lights

(Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks professional.)

You have again been contacted by Transmission Makers of America to do
some contract work for them. They want you to display a light (indicator) on
the HMI and make the light (indicator) blink.

A blinking light is actually a square waveform. So, they want to be able to
enter the period in milliseconds of the blinking pattern. They also want to be
able to enter the duty cycle in percentage on the HMI. So, if they enter 200 for
the period and 50 for the duty cycle, it should produce a light blinking pattern
like the one shown in Fig[I1.3] The Light has a "high” value on the graph,
when the light is on, on the HMI.

If the user were to type 400 for the period and 20 for the duty cycle, the PLC
should cause the indicator on the HMI to blink in a pattern like that shown in
Fig[1.4]

Note: In this exercise you decide what tags to create and what to name
them. Make sure that you name them appropriately so that you (and others
that may come behind you) know what the tags are meant to do.

74 CHAPTER 11. LAB 6&7

Blinking Light Square Wave (200ms period & 50% duty cycle)

Light
[
|

|
0 100 200 300 400 500 600 700 800 900 1,000 1,100

Time (ms)

Figure 11.3: Pattern on light with a 200ms period and 50% duty cycle

Blinking Light Square Wave (400ms period & 20% duty cycle)

Light
[
|

L]]]]]]]]]] i
0 100 200 300 400 500 600 700 800 900 1,000 1,100

Time (ms)

Figure 11.4: Pattern on light with a 400ms period and 20% duty cycle

11.5. C. A. L. SEE YOU LATER. 75

11.4.1 Hints

To implement blinking lights, you will have to use timers. You will most likely
need two timers. One for the on time, and one for the off time. Calculate the
amount of on and off time using the period length and the duty cycle.

Problems like this are best attacked one step at a time. So, I would recom-
mend the following decomposition:

e Create the tag which you will associate with the hmi light in the PLC

e Create the multi-state indicator in the HMI, associate it with the PLC
tag, and download the application

e Test the tag in the PLC by manually toggling it to see that the light
blinks as it should

e Create timers and logic in the PLC to make the light blink
e Create the tags in the PLC for the desired duty cycle and blink period

e Write the logic to calculate the appropriate on and off time based on the
period and duty cycle

e Test the duty cycle and period logic in the PLC manually by entering
different values in the monitor tab of the tags menu

e Create numeric entry objects in the HMI and associate them with the
duty cycle and period tags in the PLC

e Test the overall functionality

TA Signature 2:

11.5 C. A. L. See You Later.

(Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks professional.)

The grocery store manager has contacted you about doing some further
work. They have been running into situations where they need a general purpose
calculator available to all employees. They have purchased calculators in the
past but they always manage to get lost. So, the manager wants you to add a

76 CHAPTER 11. LAB 6&7

calculator to the PLC and HMI that you have previously programmed. This
way the calculator can’t be lost!

The manager wants to be able to enter two operands on the HMI, operandA
and operandB, and have the result of the calculation displayed in a third nu-
meric display field on the HMI. The calculator must be able to multiply, divide,
add, and subtract. There should be a button for each of these operations on
the HMI that will apply the desired operations to the operands and display the
result.

So, if a user enters 5 into the numeric entry field for operandA and 3 into
the numeric entry field for operandB and then presses the button for multiply,
the number 15 will be displayed in the numeric display field for the result.

11.5.1 From Functional Description to Code

Typically, when a client specifies their desired functionality, the description will
not be complete. Almost certainly they will not tell you how to implement the
functionality they desire. So, in this problem, part of the exercise is figuring
out what tags you will need to create in the PLC to make the desired HMI
functionality possible. With that in mind, spend some time ensuring that you
understand exactly how the calculator should work. Then consider how to
accomplish the desired functionality using ladder logic and the HMI. After you
have developed a plan, begin to program.

TA Signature 3:

11.6 What’s the combination again?

(Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks professional.)

The grocery store manager had a second request. The store has a safe and
every night all the large bills in the cash registers are removed and stored in
the safe. But there are several department managers that need to be able to
access the safe, some of which aren’t very good at remembering the 7 number
combination. The result is that every night the store manager is called and
asked for the combination.

To fix this problem the manager has decided that they want you to add
a screen to the HMI that will allow the department managers to type in a
shorter pin number and press a button labeled “Show Combo”. After typing
in the correct pin number and pressing the button, the safe combination will

11.6. WHAT’S THE COMBINATION AGAIN? 7

be displayed one number at a time, with each number being displayed for 3
seconds.

The manager has required that the pin number be 118. The safe combination
is 3, 5, 8, 13, 21, 34, 55, 89.

—Note 4— This problem has a set of things that must be done
in the same order every time. These sequential functions are
easier to implement if you use a structured bit latch sequence.

11.6.1 From Functional Description to Code

Typically, when a client specifies their desired functionality, the description will
not be complete. Almost certainly they will not tell you how to implement the
functionality they desire. So, in this problem, part of the exercise is figuring
out what tags you will need to create in the PLC to make the desired HMI
functionality possible. With that in mind, spend some time ensuring that you
understand exactly what the manager wants. Then consider how to accom-
plish the desired functionality using ladder logic and the HMI. After you have
developed a plan, begin to program.

TA Signature 4:

78

CHAPTER 11. LAB 6&7

Chapter 12

Pre-Lab 8&9

12.1 Introduction

Make sure to complete this pre-lab before your assigned lab time. You will not
be allowed to begin working on your lab without having this complete.

12.2 Background

In the coming lab you will continue to use timer instructions, math instructions,
and boolean logic. As an added component, you will also be making the HMI
display screen for each of the portions of the lab.

12.3 Problem 1

Read the lab 8&9 manual and familiarize yourself with the program specifica-
tions.

In the hints section that follows the program specifications there is a sug-
gested approach to programming this lab. Follow the approach listed there,
writing each of the specifications and the steps that you think will be involved.
Then write the ladder logic (on paper) that you think will allow you to keep
track of the average speed without keeping a history of past speeds.

12.4 Problem 2

Draw an HMI interface and state all necessary PLC tags required to realize the
HMI specifications laid out in the Lab 9 manual.

**If you are confused or feel that some information has not been given
which is necessary, make assumptions to fill in the gaps and clearly state the
assumptions that you have made (if any).

79

80 CHAPTER 12. PRE-LAB 8&9

12.5 Problem 3 - Read the Manual

Read the lab manual. Then write a paragraph about the content and expec-
tations in the lab manual which will convince the grader that you have in fact
read the complete lab manual.

Chapter 13

Lab 8&9

13.1 Introduction

In this lab you gain experience with:
1. Developing HMI applications
2. Applying course material to a real world problem
3. Meeting functional software specification requirements

4. Exceeding HMI design expectations

13.1.1 Lab Files

Go to iLearn and download the PLC and HMI files for this lab to the PC. Then
download the PLC project to the PLC and the HMI application to the HMI.

13.1.2 Acceptable Instructions

You may have previous experience with PLCs and that is great! However, you
are only allowed to use the instructions that we have covered thus far in the lab.
So, if you have experience already, consider it a challenge to restrict yourself to
only use the instructions that have been covered thus far in lecture to solve the
problem!

13.1.3 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person
is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

81

82 CHAPTER 13. LAB 8&9

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help.

Student:

13.2 Challenge - Break week

The challenge organizers decided to take some personal time off. So, there
will be no challenge activity this week. It’s a good thing too! You have a big
contract coming up...

13.3 Wamapoke County Contract

(Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks very professional.)

While at an automation conference over the weekend, you met an interesting
councilwoman from a small town in Indiana. Her name was Lesley Norpe (Or
something like that). She was there looking to find someone to do some contract
work for Wamapoke County, Indiana. She had heard positive things from your
past customers and hired you on the spot.

They want you to build a custom pressure road tube machine that will be
used in assessing traffic flow between the urban and rural parts of the county.
If you aren’t sure what pressure road tubes are, watch the lecture.

13.3.1 Specifications for the Pressure Road Tube Machine

—Note 1— Assume that all vehicles which pass through Wamapoke
County only have two azles.

The pressure road tube machine must provide the following status data on
the HMI:

1. Speed of most recent vehicle
2. Average speed of all vehicles sense the last reset

3. Total vehicles sense the last reset

13.3. WAMAPOKE COUNTY CONTRACT 83

The pressure road tube machine HMI must allow the user to:
1. Set the distance from tube 1 to tube 2

2. Reset all status data with a single button press

The last thing that Wamapoke County has required is that the HMI be
designed well. Specifically, they want all the required interface to be present
(obviously), but they also want a nice depiction of a road with the pressure
road tubes on the road.

Further, the pressure road tubes in the HMI depiction should be clickable
so that Lesley can test the machine without installing the tubes. Therefore, the
tubes on the HMI will need to be buttons that are connected to the tag in the
PLC which notifies your logic that a car is on a tube.

13.3.2 Hints

Problems like this are best attacked one step at a time. So, I would recommend
the following decomposition:

Program Spec 1. Be sure that you understand the specifications for the functionality.

Decomposition 2. Go through each of the required functions and create a list of steps
that will be involved (ie. steps to count the number of vehicles, steps to
reset all status data on button press).

Bottom-up 3. Sketch out the ladder logic necessary to complete each of the smaller
steps that you have listed.

Implementation 4. Now that you have a fully developed plan, write the required ladder
logic in the PLC.

As a final hint, do not try to keep a history of past speeds to calculate the
average. Rather, figure out a way to calculate the new average using the current
average, the current total vehicles, and the new, most recent speed.

TA Signature 1:

84

CHAPTER 13. LAB 8&9

Chapter 14

Pre-Lab 10&11

14.1 Introduction

Make sure to complete this pre-lab before your assigned lab time. You will not
be allowed to begin working on your lab without having this complete.

14.2 Background

In the coming lab you will be writing all the PLC logic and creating the HMI
pages. Moreover, you will have to understand how state machines work as they
will be used excessively in the coming labs.

The coming lab will be extended across two lab times. So, you will not have
a pre-lab next week!

14.3 Problem 1

Using the process outlined in the lecture for coding a state machine, create a
state machine that will toggle the value of a boolean tag called toggle_me. The
state machine should cause the value stored in toggle_me to change when a
rising edge occurs in the value stored in the tag called change.

Show each of the steps that are detailed in the lecture for programming a
state machine.

As a hint, I suggest having the following states:

toggleMeIsOff_waiting_for_change_0On
toggleMelIsOff_set_toggleMe_On
toggleMeIsOn_waiting_for_change_Off

toggleMeIsOn_waiting_for_change_0On

85

86 CHAPTER 14. PRE-LAB 10&11

toggleMelsOn_set_toggleMe Off

toggleMelIsOff_waiting_for_change_ 0ff

14.4 Problem 2 - Read the Manual

Read the lab manual. Then write a paragraph about the content and expec-
tations in the lab manual which will convince the grader that you have in fact
read the complete lab manual.

14.5 Problem 3

In the coming lab there will be a stoplight problem. Draw the state machine
diagram and list all states, inputs, and outputs for the stoplight problem.

Chapter 15

Lab 10&11

15.1 Introduction

In this lab you gain experience with:

1. Programming State Machines in Ladder Logic

15.1.1 Lab Files

Go to iLearn and download the PLC and HMI files for this lab to the PC. Then
download the PLC project to the PLC and the HMI application to the HMI.

15.1.2 Acceptable Instructions

You may have previous experience with PLCs and that is great! However, you
are only allowed to use the instructions that we have covered thus far in the lab.
So, if you have experience already, consider it a challenge to restrict yourself to
only use the instructions that have been covered thus far in lecture to solve the
problem!

15.1.3 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person
is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help.

87

88 CHAPTER 15. LAB 10&11

Student:

15.2 Simple State Machine

Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks very professional.

This lab deals with state machines. In general you will need to fully define
any state machine which you intend to program. However, in this part of the
lab you are given the plain English description and the enumeration of states,
inputs, and outputs.

After successfully providing the pneumatic road tube machine to Wamapoke
County, you were contacted again to do some additional work for Pawnee. They
are adding a traffic light near town hall and would like you to program the light
using an Allen Bradley PLC.

As a constraint, they require any stoplight installations in Wamapoke county
be programmed using state machines. They had an installation programmed
by a fellow named Nadha Scolar that did not work well. It was observed that
he did not use state machines. Therefore, state machines are now a required
standard for all new Wamapoke stoplight controllers.

You may have never considered using state machines in a PLC before, so
you are going back to your lair and develop a proof of concept as to how a state
machine should work in a PLC.

15.2.1 Plain English Description

You are to program a state machine that will demonstrate how state machines
work (similar to the one demonstrated in lecture with a few differences). The
state machine is to have 3 states. They are to be called Statel, State2, and
State3. Statel should be programmed to be the default state.

There are three inputs: transitionl, transition2, and transition3. The
inputs are to be connected to buttons on the HMI. You are to draw the state
machine diagram on the HMI and use it to show the current state. The tran-
sition buttons should be shown over top of the transition lines between the
states.

The outputs will be Show_Statel, Show_State2, and Show_State3. You are
to use these outputs to show the current state on the state machine diagram on
the HMI. Do not simply display the current state number. You are to display
the current state in the same way demonstrated in the lecture practical. (This
is to help you to continue getting better at HMI development.)

When the machine is in Statel and transitionl occurs, the machine
should transition to State2. When the machine is in State2 and transition2

15.3. CHALLENGE - TOGGLE... AGAIN 89

occurs, the machine should transition to State3. When the machine is in
State3 and transition3 occurs, the machine should transition to Statel.

—Note 1— In the practical example in the lecture for state ma-
chines, it was necessary to detect the rising edge of the change
state button. This will not be necessary here as each state has
unique signals associated with the state transition.

TA Signature 1:

15.3 Challenge - Toggle... Again

Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks very professional.

This lab deals with state machines. In general you will need to fully define
any state machine which you intend to program. However, in this part of the
lab you should have already defined the components of the state machine in the
pre-lab.

This week there will again be two challenges. The first of these challenges is
to make a toggle program which is better than the unstructured toggle program
you made previously in the semester.

This time, you are to make a toggle program using state machines.

15.3.1 Instructions

In the pre-lab you were required to design the logic for a state machine that
would act as a toggle program. Implement the logic in the PLC which you
have designed. Fix any errors and then show your structured solution and its
functionality to the TA.

—Note 2— By using a structured approach to the problem, you
are no longer guessing and checking. Instead you have decom-
posed the problem into states and actions. These states and
actions make the path to functionality clear. This is consid-
erably better than the unstructured approach from earlier this
semester.

TA Signature 2:

90 CHAPTER 15. LAB 10&11

15.4 Wamapoke Stoplight

Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks very professional.

This lab deals with state machines. In general you will need to fully define
any state machine which you intend to program. However, in this part of the
lab you are given the plain English description. You will have to supply every-
thing else.

Now that you have experience coding state machines in an Allen Bradley
PLC, you are ready to begin work on the stoplight.

15.4.1 Plain English Description

The stoplight is to be a 4 way stoplight without a turn lane. So, there will be
a total of 12 lights: 3 facing north, 3 facing south, 3 facing east, and 3 facing
west. Refer to Fig[I5.]] for an illustration of the scenario. The yellow car is
heading south and the city is to the north.

Notice cars which are traveling parallel to each other will have the same
light displayed. So, the yellow car and any cars heading north will have the
same color light. However, while the light is green for north and south traffic,
any cars traveling east or west will have a red light.

There are sensors in the road that detect cars which are waiting for the
stoplight to become green. When a car is detected by the sensor continuously
for 1 second, the green light shown to perpendicular traffic will immediately
turn to yellow. The yellow light will be on for 10 seconds and then change to
red. All directions of traffic will be red for 2 seconds, then the direction with
the waiting car will change to green.

—Note 83— The first 3 light traffic signal was invented in 1920
by William Potts, a police officer in Detroit. The older style
of stoplight only had two lights and did not give drivers any
warning before changing from green to red. This creates an
obvious stopping problem if the driver is going at a high speed.
By adding the amber light Potts resolved this issue.

15.4.2 Hint

Each of the 12 lights should be outputs controlled by the current state. The
sensors in the road will be the inputs. These sensors will have to be simulated
on the HMI with push buttons. Don’t forget that the sensor has to be on for
an entire second before the car is considered to be waiting. The outputs should
be shown on the HMI as multi-state indicators.

Some state transitions will be based on timers...

15.5. CHALLENGE - THE FINAL PROBLEM 91

Simple Intersection

Figure 15.1: Made available by Vecteezy.com

TA Signature 3:

15.5 Challenge - The Final Problem

Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks very professional.

This lab deals with state machines. In general you will need to fully define
any state machine which you intend to program. However, in this part of the
lab you are given the plain English description and the state machine diagram.
You will have to supply everything else.

15.5.1 Plain English Description

The challenge organization has decided that this week will be the last challenge.
They call it the Reichenbach machine. Reichenbach refers to the Reichenbach
Falls in Switzerland. These falls were made famous in Sir Arthur Conan Doyle’s
Sherlock Holmes stories as the site of Holmes’ alleged death.

The challenge is to have a depiction of the waterfall on the HMI. The de-
piction will need to include two cascades below Holmes’ starting point and two

92 CHAPTER 15. LAB 10&11

The Final Problem - State Machine Diagram

Reichenbach Falls

Initial

alternate_ending

V SherlockWillFall j‘ alternate_ending (smrmckwincnmb)

S

tell_the_story tell_the_story
(_ StartFall) (_ StartClimb
2 second wait 1 second wait

(_ FallToCascade1) (_ ClimbToLedge1

S

\, 2 second wait 1 second wait \'f
FallToCascade2) (_ ClimbToLedge2

L

Figure 15.2: State machine diagram for the final problem

ledges above. There is to be a button on the HMI which is labeled "tell the
story”. When the button is pressed, you are to depict Sherlock descending the
2 cascades to his doom. He should be on each of the cascades for 2 seconds.

However, there is to be another button labeled ”alternate ending”. This
button will toggle the function of the ”tell the story” button. After pressing
the ”alternate ending” button, the ”tell the story” button should instead depict
Sherlock climbing the two ledges above to secretly reach safety. When Sherlock
climbs to safety, he spends 1 second on each of the two ledges. Finally there is
to be a button labeled ”reset” that will bring Sherlock back to the top of the
falls.

Refer to Fig[l5.2| for any additional information.

15.5.2 How to make Sherlock move

To be able to show Sherlock on the ledges and the cascades you will need to
put a representation of him on the HMI. You may do this however, you see fit.
However, you choose to represent Sherlock you will need to show him descending
the cascades and ascending the ledges.

It would be difficult to actually show him move (like the ball in the maze
problem). Instead, it is easier to have multiple copies of your Sherlock repre-
sentation on the screen at the various required locations. You can then control
which of these Sherlocks is visible at a given moment.

15.5. CHALLENGE - THE FINAL PROBLEM 93

To control if something is visible programmatically, right click the object
whose visibility you wish to control and select animation. In the animation
dropdown, select visibility. In the menu that appears you can associate the
objects visibility with the value stored in a particular tag in the PLC. If the
tag contains the value True, then the object is visible. Otherwise, it will not
be visible on the HMI.

TA Signature 4:

94

CHAPTER 15. LAB 10&11

Chapter 16

Lab Final

16.1 Introduction

In this lab you gain experience with:
1. Applying course material to a real world problem
2. Meeting functional software specification requirements
3. HMI object visibility

4. HMI message display

16.1.1 Lab Files

Go to iLearn and download the PLC and HMI files for this lab to the PC. Then
download the PLC project to the PLC and the HMI application to the HMI.

16.1.2 Acceptable Instructions

You may have previous experience with PLCs and that is great! However, you
are only allowed to use the instructions that we have covered thus far in the lab.
So, if you have experience already, consider it a challenge to restrict yourself to
only use the instructions that have been covered thus far in lecture to solve the
problem!

16.1.3 Lab agreement

The planning of a program is often a very social activity, however the actual
writing of the code is always an individual pursuit. In this class it is very much
the same. Students are welcome to verbally assist each other, but each person
is required to write their own code and personally complete each lab. In this
way each student will gain valuable experience with programming PLCs.

95

96 CHAPTER 16. LAB FINAL

The undersigned person guarantees that any and all work demon-
strated to the TA in regard to this lab is a result of their own work
with no unauthorized help.

16.1.4 Time

Each student will have 110 minutes to complete the final. Completing the final
in the time limit is not easy. It us meant to test how well each student has
learned the course material and prepared for the final. Be careful to prioritize
higher point value items to maximize your score!

16.1.5 Lab Final Grading

The lab final is different from the other labs throughout the semester. The lab
counts as a single lab grade but is graded based on what portion of the lab you
complete in this session.

Refer to the grading rubric section for details.

Student:

16.2 Winnipeg Industrial

(Notice that there is no associated object for this lab. You must create all
the necessary tags and HMI objects to fulfill the requirements outlined in this
exercise. Make sure that the HMI page you make looks very professional.)

You have been contracted to program an industrial machine for Winnipeg
Industrial. This machine is used to assemble the internal spline shaft in trans-
missions for certain American made vehicles. These shafts have several pieces
that must be installed in a specific order. If the installation order is not correct,
the transmission will fail.

Remember the loop that is present in typical industrial machines. An in-
dustrial control system commands an output based on a program, which causes
some actuation in the environment. Then an instrument will detect the change
in the environment and relay the detected change to the PLC via an input.

Industrial machines that rely heavily on operator action are very common.
The methodology used to program them is not very different than that used
in automated machines. The primary difference is that a human operator will
often act as the actuator and instrument. The PLC contains all the necessary
instructions on how to assemble the product and shows the next instruction on
the HMI screen. When the operator has completed the instructed action they

16.2. WINNIPEG INDUSTRIAL 97

press a button to signal the PLC. Then, the next command is displayed. In this
way, the control system loop in the PLC is still sending commands via outputs
and detecting the change in the world via inputs.

Winnipeg Industrial wants you to have one location to display instructions
to the operator. If the operator takes more than 10 seconds to complete an
instruction, then the HMI should flash an indicator with a 50/50 duty cycle and
a 1 second period to get the operators attention and prompt them to continue
the process. The flashing should stop once the operator has completed the
overdue instruction.

When the operator has completed the instruction, they are to press a button
on the HMI labeled ACKN (short for acknowledge). The button should not be
allowed to be pressed until the latest instruction has been visible for 1 second.
Also, the next instruction should not be displayed until the button is released.

Winnipeg Industrial also wants you to keep track of how many parts have
been completed. They also want you to track the average cycle time (The length
of time elapsed after the operator acknowledges the ready to begin question until
the process is completed). The part completed count and the average cycle time
should be displayed on the HMI.

If any two consecutive cycles take more than 25 seconds to complete, set
a boolean tag called manager_review to true. This will tell the manager that
they need to investigate the reason for the slow production. There should be a
button on the HMI called manager login. When the button is pressed, the user
should enter a code. If the code matches the manager’s login code, an indicator
showing state of manager_review should be visible for 2 seconds. The manager
login code is 7301863.

There should also be a button on the HMI called reset. This button will
reset the state of manager_review, the completed parts count, and the average
cycle time.

Finally, all machines manufactured in the United States must have a cate-
gory 0 stop mechanism. These are typically large red buttons labeled E-STOP.
However, Winnipeg Industrial has applied to OSHA to receive a variance which
allows them to have the E-STOP button on this machine be on the HMI. It
is common to reset any running processes to an initial state when a category
0 stop occurs. So, you are required to have a red button on the HMI labeled
E-STOP that will reset the instructions to the first step whenever it is pressed.

—Note 1— A category 0 stop is an action that when taken will
remove all motive force. So, all power is removed from electri-
cally powered motors, air pressure is removed from all possible
cylinders, and the machine is generally rendered inoperable and
“safe”.

16.2.1 List of instructions to assemble spline shaft

e Ready to begin?

98 CHAPTER 16. LAB FINAL

e Place spline shaft in shaft retention nest

e Install pin bearing set 1

e Install pin bearing set 2

e Install clutch pack assembly

e Install ball bearings

e Install load plate

e Install snap ring

When the process is complete and the operator has released the ACKN button,
return to the first instruction so that the operator can begin on the next cycle.

TA Signature and Grade:

16.2. WINNIPEG INDUSTRIAL

99

100

CHAPTER 16. LAB FINAL

16.3 Grading Rubric

1. Make an attempt

e Everyone who shows up and tries gets these points (10 points)
Place to display operator instructions

e Are all the instructions displayed correctly and in the correct order
consistently? (20 points)

Blinking indicator for taking too long to complete a step

e Does the blink begin after 10 seconds? (4 points)

e Does the blink stop after the current instruction is complete? (3
points)
e Does it work for each of the instructions? (3 points)

. ACKN button

e Is the button only usable after 1 second? (3 points)
e Does the next instruction appear after releasing the button? (7
points)
E-STOP Button

e Does this button reset the process so that the first instruction is
displayed? (10 points)

Completed parts count
e Does this correctly keep count of the number of completed parts?
(10 points)
Average cycle time
e Is the average cycle time calculated and displayed correctly? (10
points)
Reset Button

e Does the reset button correctly reset the average cycle time and the
completed parts count? (10 points)

Manager login and Manager_Review indicator (hidden until manager lo-
gin)
e Does the Manager_Review tag correctly get set if two consecutive
cycle times are longer than 25 seconds? (5 points)
e Is the Manager_Review display indicator hidden until the manager
logs in with the code? (3 points)
e Does the Manager_Review display disappear after 2 seconds? (2
points)

	Lab 0
	Introduction
	How to get credit
	20 minute grace period
	Safety
	Lab agreement

	Downloading to the PLC
	Get the lab files from iLearn
	Open Studio 5000
	Set the project path
	What is setting the project path?
	How do you set the project path?

	Download to the PLC
	Ensure that the PLC is in run mode
	Open the Main Routine
	Go Online

	Downloading to the HMI
	Open FactoryTalk View Studio
	Restore the HMI application
	Open the Restored Application
	Communication Setup
	Create the Runtime Application
	Download the HMI application
	Testing the HMI application

	Online ladder program edits
	What's wrong with the logic
	What does the code mean logically
	What should it be?

	Let's fix this code
	Making the rung editable
	Adding another OR condition
	Submitting online edits

	Is it Fall yet?

	Offline ladder program edits
	How do you know that it is Fall?
	Let's code it
	Go Offline
	Edit the rung - Delete the conditions
	Download
	Go Online

	Is it Fall yet?

	Toggle a bit
	Toggle December

	Pre-Lab 1
	Introduction
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5 - Read the Manual

	Lab 1
	Introduction
	Lab Files
	Acceptable Instructions
	How to Interface with the PLC and HMI
	How to get credit
	20 minute grace period
	Lab agreement

	Storefront Door Controller
	How should the logic work?
	The Inputs and Outputs

	Storefront Door Controller... again
	How should the logic work?
	The Inputs and Outputs

	Sawmill controller
	How should the logic work?
	The Inputs and Outputs

	Challenge
	How should the logic work?
	The Inputs and Outputs

	Pre-Lab 2
	Introduction
	Background
	Problem 1
	Problem 2
	Problem 2... Again

	Problem 3
	Problem 4 - Read the Manual

	Lab 2
	Introduction
	Lab Files
	Acceptable Instructions
	How to Interface with the PLC and HMI
	How to get credit
	20 minute grace period
	Lab agreement

	Box Transfer System
	How should the logic work?
	The Inputs and Outputs

	Challenge - Toggle
	How should the logic work?
	The Inputs and Outputs

	How to create a boolean tag

	Pre-Lab 3
	Introduction
	Background
	Problem 1
	Problem 2
	Problem 3 - Read the Manual

	Lab 3
	Introduction
	Lab Files
	Acceptable Instructions
	Lab agreement

	Transmission Makers of America
	How should the logic work?
	The Inputs and Outputs

	Challenge - Modulo
	How should the logic work?
	The Inputs and Outputs

	7 Boxes and Counting
	How should the logic work?
	The Inputs and Outputs

	How to create a boolean tag

	Pre-Lab 4&5
	Introduction
	Background
	Problem 1
	Problem 2
	Problem 3 - Read the Manual

	Lab 4&5
	Introduction
	Lab Files
	Acceptable Instructions
	Lab agreement

	7 Boxes and Counting... Again
	How should the logic work?
	The Inputs and Outputs

	Challenge - The Maze Runner
	How should the logic work?
	The Inputs and Outputs

	Double Challenge - Simple Waveform
	How should the logic work?
	The Inputs and Outputs

	How to create a boolean tag

	Pre-Lab 6&5
	Introduction
	Background
	Problem 1
	Problem 2
	Problem 3 - Read the Manual

	Lab 6&7
	Introduction
	Lab Files
	Acceptable Instructions
	Lab agreement

	Editing the HMI Application
	General Process to Developing an HMI application
	Start by creating your tags in the PLC
	Adjust the HMI communication setup
	Creating the object(s)
	Connect the object to the desired PLC tag
	Create the Runtime Application
	Download the HMI application

	Challenge - StopWatch
	Hints
	The Inputs and Outputs

	Blinking Lights
	Hints

	C. A. L. See You Later.
	From Functional Description to Code

	What's the combination again?
	From Functional Description to Code

	Pre-Lab 8&9
	Introduction
	Background
	Problem 1
	Problem 2
	Problem 3 - Read the Manual

	Lab 8&9
	Introduction
	Lab Files
	Acceptable Instructions
	Lab agreement

	Challenge - Break week
	Wamapoke County Contract
	Specifications for the Pressure Road Tube Machine
	Hints

	Pre-Lab 10&11
	Introduction
	Background
	Problem 1
	Problem 2 - Read the Manual
	Problem 3

	Lab 10&11
	Introduction
	Lab Files
	Acceptable Instructions
	Lab agreement

	Simple State Machine
	Plain English Description

	Challenge - Toggle... Again
	Instructions

	Wamapoke Stoplight
	Plain English Description
	Hint

	Challenge - The Final Problem
	Plain English Description
	How to make Sherlock move

	Lab Final
	Introduction
	Lab Files
	Acceptable Instructions
	Lab agreement
	Time
	Lab Final Grading

	Winnipeg Industrial
	List of instructions to assemble spline shaft

	Grading Rubric

